The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k. 9
 1, 3, 1, 15, 9, 1, 119, 87, 18, 1, 1343, 1045, 285, 30, 1, 19905, 15663, 4890, 705, 45, 1, 369113, 286419, 95613, 16450, 1470, 63, 1, 8285261, 6248679, 2147922, 410053, 44870, 2730, 84, 1, 219627683, 159648795, 55211229, 11202534, 1394883, 105714, 4662, 108, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA E.g.f.: (Sum_{n>=0} B(n)^2 x^n/n!)^t where B = A000110. EXAMPLE The T(3,2) = 9 pairs of set partitions:   {{1},{2},{3}}  {{1},{2,3}}   {{1},{2},{3}}  {{1,2},{3}}   {{1},{2},{3}}  {{1,3},{2}}    {{1},{2,3}}  {{1},{2},{3}}    {{1},{2,3}}   {{1},{2,3}}    {{1,2},{3}}  {{1},{2},{3}}    {{1,2},{3}}   {{1,2},{3}}    {{1,3},{2}}  {{1},{2},{3}}    {{1,3},{2}}   {{1,3},{2}} Triangle begins:       1       3     1      15     9     1     119    87    18     1    1343  1045   285    30     1   19905 15663  4890   705    45     1 MATHEMATICA nn=5; Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!, {n, 0, nn}]^t, {x, 0, n}, {t, 0, k}], {n, nn}, {k, n}] CROSSREFS Row sums are A001247. First column is A060639. Cf. A000110, A000258, A008277, A048994, A059849, A181939, A318389, A318390, A318391, A318393. Sequence in context: A134144 A035342 A039815 * A329059 A147453 A147020 Adjacent sequences:  A318389 A318390 A318391 * A318393 A318394 A318395 KEYWORD nonn,tabl AUTHOR Gus Wiseman, Aug 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 07:23 EDT 2020. Contains 334822 sequences. (Running on oeis4.)