login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A039815
Triangle read by rows: matrix cube of the Stirling-1 triangle A008275.
7
1, -3, 1, 15, -9, 1, -105, 87, -18, 1, 947, -975, 285, -30, 1, -10472, 12657, -4680, 705, -45, 1, 137337, -188090, 82887, -15960, 1470, -63, 1, -2085605, 3159699, -1598954, 370237, -43890, 2730, -84, 1, 36017472, -59326371, 33613353, -9009294, 1292067, -103950, 4662, -108, 1
OFFSET
1,2
LINKS
Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, A new set of Sheffer-Bell polynomials and logarithmic numbers, Georgian Mathematical Journal, Feb. 2019, page 9.
FORMULA
E.g.f. of k-th column: ((log(1+log(1+log(1+x))))^k)/k!.
EXAMPLE
Triangle begins:
1;
-3, 1;
15, -9, 1;
-105, 87, -18, 1;
947, -975, 285, -30, 1;
-10472, 12657, -4680, 705, -45, 1;
...
MAPLE
T:= Matrix(10, 10, (i, j) -> `if`(i>= j, combinat:-stirling1(i, j), 0)):
M:= T^3:
seq(seq(M[i, j], j=1..i), i=1..10); # Robert Israel, Sep 12 2022
MATHEMATICA
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+x]]])^k, {x, 0, n}] n!/k!, {n, 9}, {k, n}]] (* Stefano Spezia, Sep 12 2022 *)
CROSSREFS
Cf. A000268 (first column), A008275.
Sequence in context: A135896 A134144 A035342 * A318392 A329059 A147453
KEYWORD
sign,tabl
AUTHOR
Christian G. Bower, Feb 15 1999
STATUS
approved