login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059849
Number of pairs of partitions of {1,2,...,n} whose meet is the partition {{1}, {2}, ..., {n}}.
23
1, 1, 3, 15, 113, 1153, 15125, 245829, 4815403, 111308699, 2985997351, 91712874487, 3189130896077, 124366296990757, 5395176819674205, 258547307299130037, 13603419571939001827, 781604484498111072195, 48806254671145521802863, 3298007680091577596528415
OFFSET
0,3
LINKS
P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
E. R. Canfield, Meet and join in the partition lattice, Electronic Journal of Combinatorics, 8 (2001) R15.
B. Pittel, Where the typical set partitions meet and join, Electronic Journal of Combinatorics, 7 (2000) R5.
Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. - N. J. A. Sloane, Jan 04 2013
FORMULA
E.g.f. M(x) satisfies the equation M(exp(x)-1) = sum_{n >= 0)} (B_n)^2 * x^n/n!, where B_n is the n-th Bell number (A000110).
E.g.f.: Sum_{n>=0} exp( (1+x)^n - 2 ) / n!. - Paul D. Hanna, Jul 24 2018
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k)^2. - Vladeta Jovovic, Oct 01 2003
EXAMPLE
a(2) = 3 because there are two partitions of {1,2} and of the four possible pairs, only the pair ( {{1,2}}, {{1,2}} ) fails to have meet equal to {{1},{2}}.
MATHEMATICA
a[n_] := Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; Array[a, 20] (* Robert G. Wilson v, Jul 24 2018 *)
PROG
(PARI) /* From Vladeta Jovovic's formula: */
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)^2)}
CROSSREFS
Cf. Bell numbers A000110. Also A007311 and Stirling numbers of the second kind, A000225.
Sequence in context: A056053 A295758 A343707 * A123853 A357794 A335531
KEYWORD
nonn
AUTHOR
E. R. Canfield (erc(AT)cs.uga.edu), Feb 26 2001
EXTENSIONS
More terms from Vladeta Jovovic, Mar 04 2001
STATUS
approved