login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059851
a(n) = n - floor(n/2) + floor(n/3) - floor(n/4) + ... (this is a finite sum).
28
0, 1, 1, 3, 2, 4, 4, 6, 4, 7, 7, 9, 7, 9, 9, 13, 10, 12, 12, 14, 12, 16, 16, 18, 14, 17, 17, 21, 19, 21, 21, 23, 19, 23, 23, 27, 24, 26, 26, 30, 26, 28, 28, 30, 28, 34, 34, 36, 30, 33, 33, 37, 35, 37, 37, 41, 37, 41, 41, 43, 39, 41, 41, 47, 42, 46, 46, 48, 46, 50, 50, 52, 46, 48, 48
OFFSET
0,4
COMMENTS
As n goes to infinity we have the asymptotic formula: a(n) ~ n * log(2).
FORMULA
From Vladeta Jovovic, Oct 15 2002: (Start)
a(n) = A006218(n) - 2*A006218(floor(n/2)).
G.f.: 1/(1-x)*Sum_{n>=1} x^n/(1+x^n). (End)
a(n) = Sum_{n/2 < k < =n} d(k) - Sum_{1 < =k <= n/2} d(k), where d(k) = A000005(k). Also, a(n) = number of terms among {floor(n/k)}, 1<=k<=n, that are odd. - Leroy Quet, Jan 19 2006
From Ridouane Oudra, Aug 15 2019: (Start)
a(n) = Sum_{k=1..n} (floor(n/k) mod 2).
a(n) = (1/2)*(n + A271860(n)).
a(n) = Sum_{k=1..n} round(n/(2*k)) - floor(n/(2*k)), where round(1/2) = 1. (End)
a(n) = 2*A263086(n) - 3*A006218(n). - Ridouane Oudra, Aug 17 2024
EXAMPLE
a(5) = 4 because floor(5) - floor(5/2) + floor(5/3) - floor(5/4) + floor(5/5) - floor(5/6) + ... = 5 - 2 + 1 - 1 + 1 - 0 + 0 - 0 + ... = 4.
MAPLE
for n from 0 to 200 do printf(`%d, `, sum((-1)^(i+1)*floor(n/i), i=1..n)) od:
MATHEMATICA
f[list_, i_] := list[[i]]; nn = 200; a = Table[1, {n, 1, nn}]; b =
Table[If[OddQ[n], 1, -1], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] // Accumulate (* Geoffrey Critzer, Mar 29 2015 *)
Table[Sum[Floor[n/k] - 2*Floor[n/(2*k)], {k, 1, n}], {n, 0, 100}] (* Vaclav Kotesovec, Dec 23 2020 *)
PROG
(PARI) { for (n=0, 10000, s=1; d=2; a=n; while ((f=floor(n/d)) > 0, a-=s*f; s=-s; d++); write("b059851.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 29 2009
(Python)
from math import isqrt
def A059851(n): return ((t:=isqrt(m:=n>>1))**2<<1)-(s:=isqrt(n))**2+(sum(n//k for k in range(1, s+1))-(sum(m//k for k in range(1, t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023
(Magma)
A059851:= func< n | (&+[Floor(n/j)*(-1)^(j-1): j in [1..n]]) >;
[A059851(n): n in [1..80]]; // G. C. Greubel, Jun 27 2024
(SageMath)
def A059851(n): return sum((n//j)*(-1)^(j-1) for j in range(1, n+1))
[A059851(n) for n in range(81)] # G. C. Greubel, Jun 27 2024
CROSSREFS
Partial sums of A048272.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), this sequence (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).
Sequence in context: A069745 A112199 A145815 * A327637 A366409 A345082
KEYWORD
nonn,easy
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Feb 27 2001
EXTENSIONS
More terms from James A. Sellers and Larry Reeves (larryr(AT)acm.org), Feb 27 2001
STATUS
approved