login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344814
a(n) = Sum_{k=1..n} floor(n/k) * 3^(k-1).
12
1, 5, 15, 46, 128, 384, 1114, 3332, 9903, 29671, 88721, 266151, 797593, 2392649, 7175709, 21526834, 64573556, 193720536, 581141026, 1743422288, 5230207428, 15690619684, 47071679294, 141215037738, 423644574301, 1270933715189, 3812799550089, 11438398630159
OFFSET
1,2
COMMENTS
Partial sums of A034730.
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} 3^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 3*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 3^(k-1) * x^k/(1 - x^k).
a(n) ~ 3^n / 2. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/2) * Sum_{k=1..n} (3^floor(n/k) - 1). - Ridouane Oudra, Feb 05 2023
MAPLE
seq(add(3^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 05 2023
MATHEMATICA
a[n_] := Sum[3^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, n\k*3^(k-1));
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, 3^(d-1)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-3*x^k))/(1-x))
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 3^(k-1)*x^k/(1-x^k))/(1-x))
(Magma)
A344814:= func< n | (&+[Floor(n/k)*3^(k-1): k in [1..n]]) >;
[A344814(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
(SageMath)
def A344814(n): return sum((n//k)*3^(k-1) for k in range(1, n+1))
[A344814(n) for n in range(1, 41)] # G. C. Greubel, Jun 26 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 29 2021
STATUS
approved