The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344816 a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1). 8
 1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A339685. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1000 FORMULA a(n) = Sum_{k=1..n} Sum_{d|k} 5^(d-1). G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 5*x^k). G.f.: (1/(1 - x)) * Sum_{k>=1} 5^(k-1) * x^k/(1 - x^k). a(n) ~ 5^n / 4. - Vaclav Kotesovec, Jun 05 2021 a(n) = (1/4) * Sum_{k=1..n} (5^floor(n/k) - 1). - Ridouane Oudra, Mar 05 2023 MAPLE seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023 MATHEMATICA a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *) PROG (PARI) a(n) = sum(k=1, n, n\k*5^(k-1)); (PARI) a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1))); (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x)) (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x)) CROSSREFS Column k=5 of A344821. Cf. A059851, A268235, A332533, A344814, A344815, A344817, A344818, A344819, A344820. Sequence in context: A304278 A155603 A282991 * A295270 A275860 A054256 Adjacent sequences: A344813 A344814 A344815 * A344817 A344818 A344819 KEYWORD nonn AUTHOR Seiichi Manyama, May 29 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 21:14 EST 2023. Contains 367462 sequences. (Running on oeis4.)