|
|
A344816
|
|
a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1).
|
|
8
|
|
|
1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} Sum_{d|k} 5^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 5*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 5^(k-1) * x^k/(1 - x^k).
a(n) = (1/4) * Sum_{k=1..n} (5^floor(n/k) - 1). - Ridouane Oudra, Mar 05 2023
|
|
MAPLE
|
seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
|
|
MATHEMATICA
|
a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
|
|
PROG
|
(PARI) a(n) = sum(k=1, n, n\k*5^(k-1));
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x))
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|