login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344816
a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1).
12
1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784
OFFSET
1,2
COMMENTS
Partial sums of A339685.
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} 5^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 5*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 5^(k-1) * x^k/(1 - x^k).
a(n) ~ 5^n / 4. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/4) * Sum_{k=1..n} (5^floor(n/k) - 1). - Ridouane Oudra, Mar 05 2023
MAPLE
seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
MATHEMATICA
a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, n\k*5^(k-1));
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x))
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x))
(Magma)
A344816:= func< n | (&+[Floor(n/k)*5^(k-1): k in [1..n]]) >;
[A344816(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
(SageMath)
def A344816(n): return sum((n//k)*5^(k-1) for k in range(1, n+1))
[A344816(n) for n in range(1, 41)] # G. C. Greubel, Jun 26 2024
CROSSREFS
Column k=5 of A344821.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), this sequence (q=5), A332533 (q=n).
Sequence in context: A304278 A155603 A282991 * A295270 A275860 A054256
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 29 2021
STATUS
approved