login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344821
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * k^(j-1).
6
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 9, 8, 5, 1, 6, 15, 20, 10, 6, 1, 7, 23, 46, 37, 14, 7, 1, 8, 33, 92, 128, 76, 16, 8, 1, 9, 45, 164, 349, 384, 141, 20, 9, 1, 10, 59, 268, 790, 1394, 1114, 280, 23, 10, 1, 11, 75, 410, 1565, 3946, 5491, 3332, 541, 27, 11
OFFSET
1,3
LINKS
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - k*x^j).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} k^(j-1) * x^j/(1 - x^j).
A(n, k) = Sum_{j=1..n} Sum_{d|j} k^(d - 1).
T(n, k) = Sum_{j=1..k+1} floor((k+1)/j) * (n-k-1)^(j-1), for n >= 1, 0 <= k <= n-1 (antidiagonal triangle). - G. C. Greubel, Jun 27 2024
EXAMPLE
Square array, A(n, k), begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
3, 5, 9, 15, 23, 33, 45, ...
4, 8, 20, 46, 92, 164, 268, ...
5, 10, 37, 128, 349, 790, 1565, ...
6, 14, 76, 384, 1394, 3946, 9384, ...
Antidiagonal triangle, T(n, k), begins:
1;
1, 2;
1, 3, 3;
1, 4, 5, 4;
1, 5, 9, 8, 5;
1, 6, 15, 20, 10, 6;
1, 7, 23, 46, 37, 14, 7;
1, 8, 33, 92, 128, 76, 16, 8;
1, 9, 45, 164, 349, 384, 141, 20, 9;
MATHEMATICA
A[n_, k_] := Sum[If[k == 0 && j == 1, 1, k^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
PROG
(PARI) A(n, k) = sum(j=1, n, n\j*k^(j-1));
(PARI) A(n, k) = sum(j=1, n, sumdiv(j, d, k^(d-1)));
(Magma)
A:= func< n, k | k eq n select n else (&+[Floor(n/j)*k^(j-1): j in [1..n]]) >;
A344821:= func< n, k | A(k+1, n-k-1) >;
[A344821(n, k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
(SageMath)
def A(n, k): return n if k==n else sum((n//j)*k^(j-1) for j in range(1, n+1))
def A344821(n, k): return A(k+1, n-k-1)
flatten([[A344821(n, k) for k in range(n)] for n in range(1, 13)]) # G. C. Greubel, Jun 27 2024
CROSSREFS
Columns k=0..5 give A000027, A006218, A268235, A344814, A344815, A344816.
A(n,n) gives A332533.
Sequence in context: A132108 A377000 A210489 * A125175 A210552 A193376
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 29 2021
STATUS
approved