login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377000
Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.
3
1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
OFFSET
2,2
COMMENTS
A number is n-esthetic if, when written in base n, adjacent digits differ by 1: see De Koninck and Doyon (2009), where T(n,k) is denoted by N_q(r).
LINKS
Paolo Xausa, Table of n, a(n) for n = 2..11326 (first 150 antidiagonals, flattened).
Jean-Marie De Koninck and Nicolas Doyon, Esthetic Numbers, Ann. Sci. Math. Québec 33 (2009), No. 2, pp. 155-164.
Giovanni Resta, Esthetic Numbers, Numbers Aplenty, 2013.
Branko J. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33 (arXiv version, arXiv:0704.0750 [math.DG], 2007).
FORMULA
All of the following formulas are taken from De Koninck and Doyon (2009).
T(n,k) = 2^k/(n+1) * Sum_{m=1..n, m odd, m != (n+1)/2} cos(p)^k*(cot(p) + csc(p))^2, where p = Pi*m/(n+1).
T(n,1) = n - 1.
T(2,k) = 1.
T(3,k) = 2^((k+1)/2) if k is odd, 3*2^((k-2)/2) if k is even = A029744(k+1).
T(4,k) = A000045(k+3).
T(5,k) = 4*3^((k-1)/2) if k is odd, 7*3^((k-2)/2) if k is even = A228879(k-1).
Conjectures from Chai Wah Wu, Oct 21 2024: (Start)
Conjecture 1: For even n, T(n,k) is the number of meaningful differential operations of the k-th order on the space R^(n-1).
Conjecture 2: For each n, the row T(n,k) satisfies a linear recurrence. For example:
T(6,k) = T(6,k-1) + 2*T(6,k-2) - T(6,k-3) for k > 3 (A090990).
T(7,k) = 4*T(7,k-2) - 2*T(7,k-4) for k > 4.
T(8,k) = T(8,k-1) + 3*T(8,k-2) - 2*T(8,k-3) - T(8,k-4) for k > 4 (A090992).
T(9,k) = 5*T(9,k-2) - 5*T(9,k-4) for k > 4.
T(10,k) = T(10,k-1) + 4*T(10,k-2) - 3*T(10,k-3) - 3*T(10,k-4) + T(10,k-5) for k > 5.
T(11,k) = 6*T(11,k-2) - 9*T(11,k-4) + 2*T(11,k-6) for k > 6.
T(12,k) = T(12,k-1) + 5*T(12,k-2) - 4*T(12,k-3) - 6*T(12,k-4) + 3*T(12,k-5) + T(12,k-6) for k > 6 (A129638).
...
Note that for even n, Conjecture 1 implies Conjecture 2 due to (Malesevic, 1998).
Conjecture 3: T(n,n-2) = A182555(n-2). (End)
EXAMPLE
Array begins (cf. De Koninck and Doyon (2009), table on p. 155):
n\k| 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------
2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... = A000012
3 | 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, ... = A029744 (from n = 2)
4 | 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... = A000045 (from n = 4)
5 | 4, 7, 12, 21, 36, 63, 108, 189, 324, 567, ... = A228879
6 | 5, 9, 16, 29, 52, 94, 169, 305, 549, 990, ...
7 | 6, 11, 20, 37, 68, 126, 232, 430, 792, 1468, ...
8 | 7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, ...
9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ...
10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994
... \______ A152086 (main diagonal)
MATHEMATICA
A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]];
Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
PROG
(Python)
from itertools import count, islice
from functools import lru_cache
@lru_cache(maxsize=None)
def A377000_N(q, r, i):
if r==1 and i==0: return 0
if r==1: return 1
if q==2: return r+i&1^1
if i == 0: return A377000_N(q, r-1, 1)
if i == q-1: return A377000_N(q, r-1, q-2)
return A377000_N(q, r-1, i-1)+A377000_N(q, r-1, i+1)
def A377000_T(n, k): return sum(A377000_N(n, k, i) for i in range(n))
def A377000_gen(): # generator of terms
for n in count(2):
for k in range(1, n):
yield A377000_T(n-k+1, k)
A377000_list = list(islice(A377000_gen(), 100)) # Chai Wah Wu, Oct 21 2024
CROSSREFS
Cf. A000012 (row n = 2), A029744 (row n = 3), A000045 (row n = 4), A228879 (row n = 5), A090994 (row n = 10).
Cf. A102699, A152086 (main diagonal).
Diagonal above the main diagonal appears to be A206603.
Sequence in context: A208777 A104732 A132108 * A210489 A344821 A125175
KEYWORD
nonn,tabl,base
AUTHOR
Paolo Xausa, Oct 12 2024
STATUS
approved