login
A152086
a(n) = Sum_{k=1..n-1} k*A110971(n,k).
4
1, 3, 8, 21, 52, 126, 296, 685, 1556, 3498, 7768, 17122, 37416, 81308, 175568, 377469, 807604, 1721970, 3657464, 7746838, 16357496, 34459428, 72407728, 151851986, 317777032, 663908196, 1384524656, 2883208740, 5994736336, 12448784824, 25816193952, 53479331357, 110652549620
OFFSET
2,2
LINKS
M. A. Michels and U. Knauer, The congruence classes of paths and cycles, Discr. Math., 309 (2009), 5352-5359. See p. 5356.
FORMULA
a(n) = A102699(n)/2. - Paolo Xausa, Oct 13 2024, from N. J. A. Sloane formula in A102699.
MATHEMATICA
A110971[n_] := (n+1)*2^(n-2) - If[OddQ[n], (n-1/2)*Binomial[n-1, (n-1)/2], 2*(n-1)*Binomial[n-2, (n-2)/2]];
Array[A110971, 50, 2] (* Paolo Xausa, Oct 13 2024 *)
PROG
(Python)
from math import comb
def A152086(n): return ((n+1<<n-2)-(((n<<1)-1)*comb(n-1, n-1>>1)>>1 if n&1 else (n-1)*comb(n-2, n-2>>1)<<1)) # Chai Wah Wu, Oct 28 2024
CROSSREFS
Main diagonal of A377000.
Sequence in context: A259714 A096770 A007835 * A014396 A170881 A039671
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 20 2009
EXTENSIONS
More terms from Paolo Xausa, Oct 13 2024
STATUS
approved