login
A152085
a(n) = A152084(n) + 2^floor(log_2(A152084(n))).
2
5, 11, 19, 47, 73, 79, 131, 137, 167, 173, 191, 277, 307, 367, 379, 563, 569, 587, 593, 653, 677, 719, 743, 1033, 1069, 1129, 1153, 1171, 1213, 1231, 1321, 1399, 1423, 1453, 1459, 1483, 1489, 1531, 2063, 2087, 2111, 2141, 2153, 2237, 2273, 2351, 2423, 2447
OFFSET
1,1
COMMENTS
Every term is prime.
If a(n) is written in binary, then the leftmost 2 digits are "10". If the leftmost "10" is replaced with "1", then we would have the binary representation of A152084(n), which is a prime.
LINKS
MAPLE
filter:= n -> isprime(n) and isprime(n + 2^ilog2(n)):
map(t -> t + 2^ilog2(t), select(filter, [seq(i, i=3..10000, 2)])); # Robert Israel, Mar 14 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 23 2008
EXTENSIONS
Extended by Ray Chandler, Nov 26 2008
STATUS
approved