login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090990 Number of meaningful differential operations of the n-th order on the space R^5. 6
5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^4. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

REFERENCES

B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, arXiv:0704.0750 [math.DG], 2007.

B. Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative, arXiv:0706.0249 [math.CO], 2007.

Index entries for linear recurrences with constant coefficients, signature (1,2,-1).

FORMULA

a(n+3) = a(n+2) + 2*a(n+1) - a(n).

G.f.: x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). - Ralf Stephan, Aug 19 2004

MAPLE

NUM := proc(k :: integer) local i, j, n, Fun, Identity, v, A; n := 5; # <- DIMENSION Fun := (i, j)->piecewise(((j=i+1) or (i+j=n+1)), 1, 0); Identity := (i, j)->piecewise(i=j, 1, 0); v := matrix(1, n, 1); A := piecewise(k>1, (matrix(n, n, Fun))^(k-1), k=1, matrix(n, n, Identity)); return(evalm(v&*A&*transpose(v))[1, 1]); end:

MATHEMATICA

LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)

PROG

(PARI) my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019

(Sage) a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019

(GAP) a:=[5, 9, 16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019

CROSSREFS

Cf. A090989, A090991, A090992, A090993, A090994, A090995.

Cf. A000079, A007283, A020701, A020714, A129638.

Sequence in context: A020958 A020750 A020713 * A225605 A088495 A218611

Adjacent sequences:  A090987 A090988 A090989 * A090991 A090992 A090993

KEYWORD

nonn

AUTHOR

Branko Malesevic, Feb 29 2004

EXTENSIONS

More terms from Ralf Stephan, Aug 19 2004

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 10:54 EDT 2020. Contains 337428 sequences. (Running on oeis4.)