OFFSET
0,1
COMMENTS
Same as Pisot sequences E(5,10), L(5,10), P(5,10), T(5,10). See A008776 for definitions of Pisot sequences.
The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005
5 times powers of 2. - Omar E. Pol, Dec 16 2008
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
With the addition of "2, 3," at the beginning, this sequence gives terms (n + 3) through the first term greater than 2^n, for n odd, of the negabinary Keith sequence for 2^n, thus proving that with the exception of 2 itself, no odd-indexed power of 2 is a negabinary Keith number (see A188381). - Alonso del Arte, Feb 02 2012
Let b(0) = 5 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n+2) = a(n) for n > 0. - Derek Orr, Jan 15 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..238
Tanya Khovanova, Recursive Sequences.
Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1003.
Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
Index entries for linear recurrences with constant coefficients, signature (2).
FORMULA
a(n) = 5*2^n. a(n) = 2*a(n-1).
G.f.: 5/(1-2*x).
If m is a term greater than 5 of this sequence then m = 5*phi(phi(m)). - Farideh Firoozbakht, Aug 16 2005
a(n) = A118416(n+1,3) for n>2. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n)*5. - Omar E. Pol, Dec 16 2008
a(n) = A173786(n+2,n) for n > 1. - Reinhard Zumkeller, Feb 28 2010
Sum_{n>=1} 1/a(n) = 2/5. - Amiram Eldar, Oct 28 2020
E.g.f.: 5*exp(2*x). - Stefano Spezia, May 15 2021
MATHEMATICA
Table[5*2^n, {n, 0, 31}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
NestList[2#&, 5, 40] (* Harvey P. Dale, Mar 13 2022 *)
PROG
(Magma) [5*2^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=5<<n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved