This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095666 Pascal (1,4) triangle. 16
 4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the fourth member, q=4, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1), A029635 (q=2) (but with a(0,0)=2, not 1), A095660. This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column nr. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) := Sum_{m=0..n} (a(n,m)*x^m is G(z,x) = g(z)/(1 - x*z*f(z)). Here: g(x) = (4-3*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (4-3*z)/(1-(1+x)*z). The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k) = A022095(n-2), n >= 2, with n=1 value 4. [Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.] T(2*n,n) = A029609(n) for n > 0, A029609 are the central terms of the Pascal (2,3) triangle A029600. [Reinhard Zumkeller, Apr 08 2012] LINKS Reinhard Zumkeller, Rows n=0..150 of triangle, flattened W. Lang, First 10 rows. FORMULA Recursion: a(n, m) = 0 if m > n, a(0, 0) = 4; a(n, 0) = 1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1). G.f. column m (without leading zeros): (4-3*x)/(1-x)^(m+1), m >= 0. a(n,k) = (1 + 3*k/n)*binomial(n,k). [Mircea Merca, Apr 08 2012] EXAMPLE [4]; [1,4]; [1,5,4]; [1,6,9,4]; [1,7,15,13,4]; ... MAPLE a(n, k):=(1+3*k/n)*binomial(n, k) # Mircea Merca, Apr 08 2012 PROG (Haskell) a095666 n k = a095666_tabl !! n !! k a095666_row n = a095666_tabl !! n a095666_tabl = [4] : iterate    (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1, 4] -- Reinhard Zumkeller, Apr 08 2012 CROSSREFS Row sums: A020714(n-1), n >= 1, 4 if n=0. Alternating row sums are [4, -3, followed by 0's]. Column sequences (without leading zeros) give for m=1..9, with n >= 0: A000027(n+4), A055999(n+1), A060488(n+3), A095667-71, A095819. Sequence in context: A318281 A126114 A074393 * A257231 A196757 A193254 Adjacent sequences:  A095663 A095664 A095665 * A095667 A095668 A095669 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Jun 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 20:57 EST 2019. Contains 319282 sequences. (Running on oeis4.)