OFFSET
0,2
LINKS
Tom Copeland, Addendum to Elliptic Lie Triad
FORMULA
O.g.f. G(x,t) = (1 - 4t)/(1 - x + t x^2) = a / [t (x - (1+sqrt(a))/(2t))(x - (1-sqrt(a))/(2t))] with a = 1-4t.
Recursion P(n,t) = -t P(n-2,t) + P(n-1,t) with P(-1,t)=0 and P(0,t) = 1-4t.
Convolution of the Fibonacci polynomials of signed A011973 Fb(n,-t) with coefficients of (1-4t), e.g., (1-4t)Fb(5,-t) = (1-4t)(1-3t+t^2) = 1-7t+13t^2-4t^3, so, for n>=1 and k<=(n-1), T(n,k) = (-1)^k [-4*binomial(n-(k-1),k-1) - binomial(n-k,k)] with the convention that 1/(-m)! = 0 for m>=1, i.e., let binomial(n,k) = nint[n!/((k+c)!(n-k+c)!)] for c sufficiently small in magnitude.
Third column is A034856, and the fourth, A000297. Embedded in the coefficients of the highest order term of the polynomials is A008586 (cf. also A008574).
With P(0,t)=0, the o.g.f. is H(x,t) = (1-4t) x(1-tx)/[1-x(1-tx)] = (1-4t) Linv(Cinv(tx)/t), where Linv(x) = x/(1-x) with inverse L(x) = x/(1+x) and Cinv(x) = x (1-x) is the inverse of the o.g.f. of the shifted Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2. Then Hinv(x,t) = C[t L(x/(1-4t))]/t = {1 - sqrt[1-4t(x/(1-4t))/[1+x/(1-4t)]]}/2t = {1-sqrt[1-4tx/(1-4t+x)]}/2t = 1/(1-4t) + (-1+t)/(1-4t)^2 x + (1-2t+2t^2)/(1-4t)^3 x^ + (-1+3t-6t^2+5t^3)/(1-4t)^4 + ..., where the numerators are the signed polynomials of A098474, reverse of A124644.
Row sums (t=1) are periodic -3,-3,0,3,3,0, repeat the six terms ... with o.g.f. -3 - 3x (1-x) / [1-x(1-x)]. Cf. A084103.
Unsigned row sums (t=-1) are shifted A022088 with o.g.f. 5 + 5x(1+x) / [x(1+x)].
EXAMPLE
Row polynomials:
P(0,t) = 1 - 4t
P(1,t) = 1 - 4t = [-t(0) + (1-4t)] = -t(0) + P(0,t)
P(2,t) = 1 - 5t + 4t^2 = [-t(1-4t) + (1-4t)] = -t P(0,t) + P(1,t)
P(3,t) = 1 - 6t + 8t^2 = [-t(1-4t) + (1-5t+4t^2)] = -t P(1,t) + P(2,t)
P(4,t) = 1 - 7t + 13t^2 - 4t^3 = [-t(1-5t+4t^2) + (1-6t+8t^2)]
P(5,t) = 1 - 8t + 19t^2 - 12t^3 = [-t(1-6t+8t^2) + (1-7t+13t^2)]
P(6,t) = 1 - 9t + 26t^2 - 25t^3 + 4t^4
P(7,t) = 1 - 10t + 34t^2 - 44t^3 + 16t^4
P(8,t) = 1 - 11t + 43t^2 - 70t^3 + 41t^4 - 4t^5
P(9,t) = 1 - 12t + 53t^2 - 104t^3 + 85t^4 - 20t^5
P(10,t) = 1 - 13t + 64t^2 - 147t^3 + 155t^4 - 61t^5 + 4t^6
P(11,t) = 1 - 14t + 76t^2 - 200t^3 + 259t^4 - 146t^5 + 24t^6
...
MATHEMATICA
p = (1 - 4 t) / (1 - x + t x^2) + O[x]^12 // CoefficientList[#, x] &;
CoefficientList[#, t] & /@ p // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)
CROSSREFS
KEYWORD
easy,sign,tabf
AUTHOR
Tom Copeland, Jan 18 2016
EXTENSIONS
Data corrected by Andrey Zabolotskiy, Mar 07 2024
STATUS
approved