login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084103
Expansion of (1+x)^3/(1+x^3).
6
1, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3, 0, 3, 3, 0, -3, -3
OFFSET
0,2
COMMENTS
Partial sums are A084104.
FORMULA
G.f.: (1+x)^3/(1+x^3).
a(n) = Sum_{k=0..n} binomial(2n-k-1, k)(-1)^k*3(n-k). - Paul Barry, Jan 21 2005
a(0) = 1 and a(n) = 2*sqrt(3)*sin(n*Pi/3). - N-E. Fahssi, Mar 04 2010
Euler transform of length 6 sequence [3, -3, -1, 0, 0, 1]. - Michael Somos, Feb 13 2011
a(n) = -a(-n) = 3 * A128834(n) except a(0) = 1. - Michael Somos, Feb 13 2011
a(n) = 3*(n^2 mod 3)*(-1)^floor(n/3), n>0. - Wesley Ivan Hurt, May 15 2015
The periodic sequence b(n) = a(n+1) has the o.g.f. 3 + G(x) = 3 + 3x(1-x) / (1-x(1-x)) = 3 + 3 L(Cinv(x)) = 3 + 3 x - 3 x^3 - 3 x^4 + ... , where L(x) = x/(1-x) with inverse Linv(x) = x/(1+x) and Cinv(x) = x(1-x), the inverse of the o.g.f. for the shifted Catalan numbers of A000108, C(x) = (1-sqrt(1-4x))/2. Then Ginv(x) = C(Linv(x/3)) = [1 - sqrt[1-4x/(3+x)]]/2. Cf. A267633. - Tom Copeland, Jan 25 2016
EXAMPLE
1 + 3*x + 3*x^2 - 3*x^4 - 3*x^5 + 3*x^7 + 3*x^8 - 3*x^10 - 3*x^11 + ...
MAPLE
1, seq(op((-1)^i*[3, 3, 0]), i=0..20); # Robert Israel, May 17 2015
MATHEMATICA
CoefficientList[Series[(1 + x)^3/(1 + x^3), {x, 0, 100}], x] (* Vincenzo Librandi, May 16 2015 *)
Join[{1}, LinearRecurrence[{1, -1}, {3, 3}, 30]] (* G. C. Greubel, Jan 15 2018 *)
PROG
(PARI) {a(n) = (n==0) + [0, 3, 3, 0, -3, -3][n%6 + 1]} /* Michael Somos, Feb 13 2011 */
(PARI) {a(n) = (n==0) - 3 * (-1)^n * kronecker(-3, n)} /* Michael Somos, Feb 13 2011 */
(Magma) I:=[1, 3, 3]; [n le 3 select I[n] else Self(n-1)-Self(n-2): n in [1..100]]; // Vincenzo Librandi, May 16 2015
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 15 2003
STATUS
approved