OFFSET
0,2
COMMENTS
The sequence {2, -2, 0, 4, -8, 8, 0, -16, 32, -32, 0, 64, -128, 128, 0, ...} (without the leading 1) is the Lucas V(-2, 2) sequence. - R. J. Mathar, Jan 08 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Wikipedia, Lucas sequence
Index entries for linear recurrences with constant coefficients, signature (-2,-2).
FORMULA
G.f.: (1+2*x)^2/(1+2*x+2*x^2). - Paul D. Hanna, Nov 05 2009
From G. C. Greubel, Oct 13 2022: (Start)
a(n) = 2*A009116(n-1), n >= 1, with a(0) = 1.
a(n) = Real part of ( 2*(-1-i)^(n-1) + 2*[n=0] ).
a(n) = 2*(-1)^n*(2*(1+i)^(n-5) + i*(1-i)^(n-3)), n >= 1, with a(0) = 1.
E.g.f.: 2 - exp(-x)*(cos(x) - sin(x)). (End)
MATHEMATICA
LinearRecurrence[{-2, -2}, {1, 2, -2}, 50] (* Harvey P. Dale, Aug 09 2017 *)
PROG
(Magma) [1] cat [n le 2 select 2*(-1)^(n-1) else -2*(Self(n-1) +Self(n-2)): n in [1..40]]; // G. C. Greubel, Oct 13 2022
(SageMath)
b=BinaryRecurrenceSequence(-2, -2, 2, -2)
def A084102(n): return 1 if (n==0) else b(n-1)
[A084102(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Barry, May 15 2003
STATUS
approved