login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009116 Expansion of e.g.f. cos(x) / exp(x). 33
1, -1, 0, 2, -4, 4, 0, -8, 16, -16, 0, 32, -64, 64, 0, -128, 256, -256, 0, 512, -1024, 1024, 0, -2048, 4096, -4096, 0, 8192, -16384, 16384, 0, -32768, 65536, -65536, 0, 131072, -262144, 262144, 0, -524288, 1048576, -1048576, 0, 2097152, -4194304 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Apart from signs, generated by 1,1 position of H_2^n=[1,1;-1,1]^n; and a(n)=2^(n/2)*cos(Pi*n/2). - Paul Barry, Feb 18 2004

Equals binomial transform of "Period 4, repeat [1, 0, -1, 0]". - Gary W. Adamson, Mar 25 2009

Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..2000

Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.

N. J. A. Sloane, Table of n, (I-1)^n for n=0..100

Index entries for linear recurrences with constant coefficients, signature (-2,-2).

FORMULA

Real part of (-1-i)^n. See A009545 for imaginary part. - Marc LeBrun

a(n) = -2 * (a(n-1) + a(n-2)), a(0) = 1, a(1) = -1 - Michael Somos, Nov 17 2002

Sum_{j=0..[n/2]} (-1)^j*binomial(n, 2*j).

G.f.: (1 + x) / (1 + 2*x + 2*x^2).

E.g.f.: cos(x) / exp(x).

a(n) = Sum_{k, 0<=k<=n}(-1)^k*A098158(n,k). - Philippe Deléham, Dec 04 2006

a(n)*(-1)^n=A099087(n)-A099087(n-1). - R. J. Mathar, Nov 18 2007

a(n) = 1/2*[(-1-I)^n+(-1+I)^n], with n>=0 and I=sqrt(-1). - Paolo P. Lava, Nov 21 2008

a(n) = (-1)^n*A146559(n). - Philippe Deléham, Dec 01 2008

a(n) = -4*a(n-4); a(n)=A016116(n) * A075553(n+6). - Paul Curtz, Jul 22 2011

E.g.f.: cos(x)/exp(x) = 1-x/(G(0)+1); G(k) = 4k+1-x+(x^2)*(4k+1)/((2k+1)*(4k+3)-(x^2)+x*(2k+1)*(4k+3)/( 2k+2-x+x*(2k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013

a(n) = (-1)^n*2^(n/2)*cos(n*Pi/4). - Nordine Fahssi, Dec 18 2013

EXAMPLE

1 - x + 2*x^3 - 4*x^4 + 4*x^5 - 8*x^7 + 16*x^8 - 16*x^9 + 32*x^11 - 64*x^12 + ...

MAPLE

A009116 := n->add((-1)^j*binomial(n, 2*j), j=0..floor(n/2));

MATHEMATICA

n = 50; (* n = 2 mod 4 *) (CoefficientList[ Series[ Cos[x]/Exp[x], {x, 0, n}], x]* Table[k!, {k, 0, n - 1}] )[[1 ;; 45]] (* Jean-François Alcover, May 18 2011 *)

Table[(1/2)*((-1 - I)^n + (-1 + I)^n), {n, 0, 50}] (* Jean-François Alcover, Jan 31 2018, after Paolo P. Lava *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + x) / (1 + 2*x + 2*x^2) + x * O(x^n), n))} /* Michael Somos, Nov 17 2002 */

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(x)/Exp(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 22 2018

CROSSREFS

Cf. A009545, A099087, A146559, A098158, A075553, A090132.

(With different signs) row sums of triangle A104597.

Also related to A066321 and A271472.

Sequence in context: A197827 A195479 A112793 * A146559 A118434 A090132

Adjacent sequences:  A009113 A009114 A009115 * A009117 A009118 A009119

KEYWORD

sign,easy,nice

AUTHOR

R. H. Hardin

EXTENSIONS

Extended with signs by Olivier Gérard, Mar 15 1997

Definition corrected by Joerg Arndt, Apr 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 18:12 EDT 2019. Contains 326295 sequences. (Running on oeis4.)