This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146559 Expansion of (1-x)/(1 - 2*x + 2*x^2). 29
 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, 256, 0, -512, -1024, -1024, 0, 2048, 4096, 4096, 0, -8192, -16384, -16384, 0, 32768, 65536, 65536, 0, -131072, -262144, -262144, 0, 524288, 1048576, 1048576, 0, -2097152, -4194304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Partial sums of this sequence give A099087. - Philippe Deléham, Dec 01 2008 From Philippe Deléham, Feb 13 2013, Feb 20 2013: (Start) Terms of the sequence lie along the right edge of the triangle   (1)      (1)    2    (0)       2   (-2)    4     0   (-4)       4    -4   (-4)    8     0    -8    (0)       8    -8    -8    (8)   16     0   -16     0   (16)      16   -16   -16    16   (16)   32     0   -32     0    32    (0)      32   -32   -32    32    32  (-32)   64     0   -64     0    64     0  (-64)   ... Row sums of triangle are in A104597. (1+i)^n = a(n) + A009545(n)*i where i = sqrt(-1). (End) From Tom Copeland, Nov 08 2014: (Start) This array is a member of a Catalan family (A091867) related by compositions of C(x)= (1-sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, its inverse Cinv(x) = x(1-x), and the special linear fractional (Möbius) transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x. O.g.f.: G(x) = P[P[Cinv(x),-1],-1] = P[Cinv(x),-2] = x*(1-x)/[1-2x(1-x)]= x*A146599(x). Ginv(x) = C[P(x,2)] = [1-sqrt(1-4x/(1+2x))]/2 = x*A126930(x). G(-x) = -[x*(1+x) - 2*[x*(1+x)]^2 + 2^2*[x*(1+x)]^3 - ...], and so this array contains the -row sums of A030528 * Diag(1,(-2)^1,2^2,(-2)^3,...). The inverse of -G(-x) is -C[-P(x,-2)]= (-1 + sqrt(1+4x/(1-2x)))/2, an o.g.f. for A210736 with a(0) set to zero there. (End) {A146559, A009545} is the difference analog of {cos(x), sin(x)}. (Cf. the Shevelev link.) - Vladimir Shevelev, Jun 08 2017 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54. John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016. Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. Index entries for linear recurrences with constant coefficients, signature (2,-2). FORMULA a(0) = 1, a(1) = 1, a(n) = 2*a(n-1) - 2*a(n-2) for n>1. a(n) = Sum_{k=0..n} A124182(n,k)*(-2)^(n-k). a(n) = Sum_{k=0..n} A098158(n,k)*(-1)^(n-k). - Philippe Deléham, Nov 14 2008 a(n) = (1/2)*((1-I)^n + (1+I)^n), with n>=0 and I=sqrt(-1). - Paolo P. Lava, Nov 18 2008 a(n) = (-1)^n*A009116(n). - Philippe Deléham, Dec 01 2008 E.g.f.: exp(x)*cos(x). - Zerinvary Lajos, Apr 05 2009 E.g.f.: cos(x)*exp(x) = 1+x/(G(0)-x) where G(k)=4*k+1+x+(x^2)*(4*k+1)/((2*k+1)*(4*k+3)-(x^2)-x*(2*k+1)*(4*k+3)/( 2*k+2+x-x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011 a(n) = Re( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012 G.f.: 1 / (1 - x / (1 + x / (1 - 2*x))) = 1 + x / (1 + 2*x^2 / (1 - 2*x)). - Michael Somos, Jan 03 2013 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013 a(m+k) = a(m)*a(k) - A009545(m)*A009545(k). - Vladimir Shevelev, Jun 08 2017 EXAMPLE G.f. = 1 + x - 2*x^3 - 4*x^4 - 4*x^5 + 8*x^7 + 16*x^8 + 16*x^9 - 32*x^11 - 64*x^12 - ... MAPLE G(x):=exp(x)*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..44 ); # Zerinvary Lajos, Apr 05 2009 MATHEMATICA CoefficientList[Series[(1-x)/(1-2x+2x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -2}, {1, 1}, 50] (* Harvey P. Dale, Oct 13 2011 *) PROG (PARI) Vec((1-x)/(1-2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012 (Sage) def A146559():     x, y = -1, 0     while true:         yield -x         x, y = x - y, x + y a = A146559(); [a.next() for i in range(40)]  # Peter Luschny, Jul 11 2013 (MAGMA) I:=[1, 1, 0]; [n le 3 select I[n] else 2*Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014 CROSSREFS Cf. A000108, A009116, A009545, A030528, A091867, A126930, A210736. Sequence in context: A195479 A112793 A009116 * A118434 A090132 A199051 Adjacent sequences:  A146556 A146557 A146558 * A146560 A146561 A146562 KEYWORD sign,easy AUTHOR Philippe Deléham, Nov 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)