login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121625
Real part of (n + n*i)^n.
3
1, 1, 0, -54, -1024, -12500, 0, 6588344, 268435456, 6198727824, 0, -9129973459552, -570630428688384, -19384006821904192, 0, 56050417968750000000, 4722366482869645213696, 211773507042902211629312, 0, -1012950863698080557631477248, -107374182400000000000000000000
OFFSET
0,4
FORMULA
a(n) = Re(n + n*i)^n.
From Chai Wah Wu, Feb 15 2024: (Start)
a(n) = n^n*Re((1+i)^n) = n^n*A146559(n) = n^n*Sum_{n=0..floor(n/2)} binomial(n,2j)*(-1)^j.
a(n) = 0 if and only if n==2 mod 4, as (1+i)^2=2i is purely imaginary, (1+i)^4=-4 is a nonzero real and (1+i) and (1+i)^3=-2+2i both have nonzero real parts.
(End)
EXAMPLE
a(7) = 6588344 since (7 + 7i)^7 = (6588344 - 6588344i).
MATHEMATICA
a[n_] := Re[(n + n*I)^n]; Array[a, 19] (* Robert G. Wilson v, Aug 17 2006 *)
PROG
(PARI) a(n) = real((n + n*I)^n); \\ Michel Marcus, Dec 19 2020
(Python)
def A121625(n): return n**n*((1, 1, 0, -2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Gary W. Adamson, Aug 12 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2006
a(0)=1 prepended by Alois P. Heinz, Dec 19 2020
STATUS
approved