login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115415
Real part of (n + i)^n, with i=sqrt(-1).
8
1, 1, 3, 18, 161, 1900, 27755, 482552, 9722113, 222612624, 5707904499, 161981127968, 5039646554593, 170561613679808, 6237995487261915, 245159013138710400, 10303367499652761601, 461102348510408544512, 21891769059478538933603, 1098983344602124698522112
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * [x^n] exp(n*x)*cos(x). - Ilya Gutkovskiy, Apr 10 2018
a(n) ~ cos(1) * n^n. - Vaclav Kotesovec, Jun 08 2019
a(n) = Sum_{j=0..floor(n/2)} binomial(n,2j)*n^(n-2j)*(-1)^j. - Chai Wah Wu, Feb 15 2024
a(n) = (1/2)*((n + i)^n + (n - i)^n) where i is the imaginary unit. - Gerry Martens, Dec 30 2024
MATHEMATICA
Table[ Re[(n + I)^n], {n, 0, 17}] (* Robert G. Wilson v, Jan 23 2006 *)
PROG
(PARI) a(n) = real((n + I)^n); \\ Michel Marcus, Apr 11 2018
(Python)
from math import comb
def A115415(n): return sum(comb(n, j)*n**(n-j)*(-1 if j&2 else 1) for j in range(0, n+1, 2)) # Chai Wah Wu, Feb 15 2024
CROSSREFS
Cf. A000312, A009545, A115416 (imaginary part), A121626, A370189.
Sequence in context: A309985 A328030 A301371 * A364432 A065058 A032031
KEYWORD
nonn,changed
AUTHOR
Reinhard Zumkeller, Jan 22 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 23 2006
STATUS
approved