This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009545 E.g.f. sin(x)*exp(x). 43
 0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216, 33554432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also first of the two associated sequences a(n) and b(n) built from a(0)=0 and a(1)=1 with the formulas a(n) = a(n-1) + b(n-1) and b(n) = -a(n-1) + b(n-1). The initial terms of the second sequence b(n) are 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, ... The points Mn(a(n)+b(n)*I) of the complex plane are located on the spiral logarithmic rho = 2*(1/2)^(2*theta)/Pi) and on the straight lines drawn from the origin with slopes: infinity, 1/2, 0, -1/2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007 A000225: (1, 3, 7, 15, 31, ...) = 2^n - 1 = INVERT transform of A009545 starting (1, 2, 2, 0, -4, -8, ...). (Cf. comments in A144081). - Gary W. Adamson, Sep 10 2008 Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012 The variant 0, 1, -2, 2, 0, -4, 8, -8, 0, 16, -32, 32, 0, -64, (with different signs) is the Lucas U(-2,2) sequence. - R. J. Mathar, Jan 08 2013 (1+i)^n = A146559(n) + a(n)*i where i = sqrt(-1). - Philippe Deléham, Feb 13 2013 This is the Lucas U(2,2) sequence. - Raphie Frank, Nov 28 2015 {A146559, A009545} are the difference analogs of {cos(x),sin(x)} (cf. [Shevelev] link). - Vladimir Shevelev, Jun 08 2017 LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..2000, Apr 09 2016 [First 100 terms from T. D. Noe] Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5. Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4. A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=2, q=-2. W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=2. Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. N. J. A. Sloane, Table of n, (I-1)^n for n=0..100 Wikipedia, Lucas sequence Index entries for linear recurrences with constant coefficients, signature (2,-2) FORMULA a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000 Imaginary part of (1+i)^n. - Marc LeBrun G.f.: x/(1 - 2*x + 2*x^2). E.g.f.: sin(x)*exp(x). a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0. a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - Henry Bottomley, May 10 2001 a(n) = (1+i)^(n-2) + (1-i)^(n-2). - Benoit Cloitre, Oct 28 2002 a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - Benoit Cloitre, Jan 31 2003 a(n) = 2^(n/2)sin(Pi*n/4). - Paul Barry, Sep 17 2003 a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - Paul Barry, Sep 20 2003 a(n+1) = Sum_{k=0..n}2^k*A109466(n,k). - Philippe Deléham, Nov 13 2006 a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - Paul Curtz, Dec 21 2007 Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - Vladimir Kruchinin, Aug 11 2010 a(n) = A046978(n) * A016116(n). - Paul Curtz, Apr 24 2011 E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011 a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012 G.f.: x*U(0)  where U(k)= 1 + x*(k+3) - x*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012 G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013 G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013 G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013 a(n) = the Lucas U_n(2, 2) sequence = (a^n - b^n)/(a - b), where a = (2 + sqrt(-4))/2 = 1 + i and b = (2 - sqrt(-4))/2 = 1 - i; a and b are solutions of x^2 - 2*x + 2 = 0. - Raphie Frank, Nov 28 2015 a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)) for n>=2. - Peter Luschny, Dec 17 2015 a(k+m) = a(k)*A146559(m) + a(m)*A146559(k). - Vladimir Shevelev, Jun 08 2017 MAPLE t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009 G(x):=exp(x)*sin(x): f:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..50 ); # Zerinvary Lajos, Apr 05 2009 A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)): seq(simplify(A009545(n)), n=0..50); # Peter Luschny, Dec 17 2015 MATHEMATICA nn=104; Range[0, nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x, 0, nn}], x] (* T. D. Noe, May 26 2007 *) Join[{a=0, b=1}, Table[c=2*b-2*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* Robert G. Wilson v, May 30 2011 *) LinearRecurrence[{2, -2}, {0, 1}, 110] (* Harvey P. Dale, Oct 13 2011 *) PROG (Sage) [lucas_number1(n, 2, 2) for n in xrange(0, 51)] # Zerinvary Lajos, Apr 23 2009 (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* Joerg Arndt, Apr 24 2011 */ (Sage) def A146559():     x, y = 0, -1     while true:         yield x         x, y = x - y, x + y a = A146559(); [a.next() for i in range(40)]  # Peter Luschny, Jul 11 2013 (MAGMA) I:=[0, 1, 2, 2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 29 2015 (PARI) x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ Altug Alkan, Dec 04 2015 CROSSREFS Cf. A009116. For minor variants of this sequence see A108520, A084102, A099087. a(2*n) = A056594(n)*2^n, n >= 1, a(2*n+1) = A057077(n)*2^n. This is the next term in the sequence A015518, A002605, A000129, A000079, A001477. Cf. A000225, A144081. - Gary W. Adamson, Sep 10 2008 Cf. A146559. Sequence in context: A283240 A108520 A099087 * A084102 A221609 A160125 Adjacent sequences:  A009542 A009543 A009544 * A009546 A009547 A009548 KEYWORD sign,easy,nice AUTHOR EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000 Definition corrected by Joerg Arndt, Apr 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 18:56 EDT 2019. Contains 326154 sequences. (Running on oeis4.)