login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160125
Number of squares and rectangles that are created at the n-th stage in the toothpick structure (see A139250).
9
0, 0, 2, 2, 0, 4, 10, 6, 0, 4, 8, 4, 4, 20, 30, 14, 0, 4, 8, 4, 4, 20, 28, 12, 4, 16, 20, 12, 28, 72, 78, 30, 0, 4, 8, 4, 4, 20, 28, 12, 4, 16, 20, 12, 28, 72, 76, 28, 4, 16, 20, 12, 28, 68, 68, 28, 24, 52, 52, 52, 128, 224, 190, 62, 0, 4, 8, 4, 4, 20, 28, 12, 4, 16, 20, 12, 28, 72
OFFSET
1,3
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
See Maple program for recurrence.
MAPLE
# First construct A168131:
w := proc(n) option remember; local k, i;
if (n=0) then RETURN(0)
elif (n <= 3) then RETURN(n-1)
else
k:=floor(log(n)/log(2)); i:=n-2^k;
if (i=0) then RETURN(2^(k-1)-1)
elif (i<2^k-2) then RETURN(2*w(i)+w(i+1));
elif (i=2^k-2) then RETURN(2*w(i)+w(i+1)+1);
else RETURN(2*w(i)+w(i+1)+2);
fi; fi; end;
# Then construct A160125:
r := proc(n) option remember; local k, i;
if (n<=2) then RETURN(0)
elif (n <= 4) then RETURN(2)
else
k:=floor(log(n)/log(2)); i:=n-2^k;
if (i=0) then RETURN(2^k-2)
elif (i<=2^k-2) then RETURN(4*w(i));
else RETURN(4*w(i)+2);
fi; fi; end;
[seq(r(n), n=0..200)];
# N. J. A. Sloane, Feb 01 2010
MATHEMATICA
w [n_] := w[n] = Module[{k, i}, Which[n == 0, 0, n <= 3, n - 1, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^(k - 1) - 1, i < 2^k - 2, 2 w[i] + w[i + 1], i == 2^k - 2, 2 w[i] + w[i + 1] + 1, True, 2 w[i] + w[i + 1] + 2]]];
r[n_] := r[n] = Module[{k, i}, Which[n <= 2, 0, n <= 4, 2, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^k - 2, i <= 2^k - 2, 4 w[i], True, 4 w[i] + 2]]];
Array[r, 78] (* Jean-François Alcover, Apr 15 2020, from Maple *)
CROSSREFS
First differences of A160124.
Cf. toothpick sequence A139250.
Sequence in context: A009545 A084102 A221609 * A151868 A344913 A052079
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 03 2009
EXTENSIONS
Terms beyond a(10) from R. J. Mathar, Jan 21 2010
STATUS
approved