login
A160124
Total number of squares and rectangles after n stages in the toothpick structure of A139250.
20
0, 0, 0, 2, 4, 4, 8, 18, 24, 24, 28, 36, 40, 44, 64, 94, 108, 108, 112, 120, 124, 128, 148, 176, 188, 192, 208, 228, 240, 268, 340, 418, 448, 448, 452, 460, 464, 468, 488, 516, 528, 532, 548, 568, 580, 608, 680, 756, 784, 788, 804, 824, 836, 864, 932, 1000, 1028
OFFSET
0,4
COMMENTS
From Omar E. Pol, Sep 16 2012: (Start)
It appears that A147614(n)/a(n) converge to 2.
It appears that A139250(n)/a(n) converge to 3/2.
It appears that a(n)/A139252(n) converge to 2.
(End)
Also 0 together with the rows sums of A211008. - Omar E. Pol, Sep 24 2012
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
See A160125 for a recurrence. - N. J. A. Sloane, Feb 03 2010
a(n) = 1+2*A139250(n)-A147614(n), n>0 (Euler's formula). [From R. J. Mathar, Jan 22 2010]
a(n) = A187220(n+1) - A147614(n), n>0. - Omar E. Pol, Feb 15 2013
MATHEMATICA
w [n_] := w[n] = Module[{k, i}, Which[n == 0, 0, n <= 3, n - 1, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^(k - 1) - 1, i < 2^k - 2, 2 w[i] + w[i + 1], i == 2^k - 2, 2 w[i] + w[i + 1] + 1, True, 2 w[i] + w[i + 1] + 2]]];
r[n_] := r[n] = Module[{k, i}, Which[n <= 2, 0, n <= 4, 2, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^k - 2, i <= 2^k - 2, 4 w[i], True, 4 w[i] + 2]]];
Join[{0}, Array[r, 100]] // Accumulate (* Jean-François Alcover, Apr 15 2020, after Maple code in A160125 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 03 2009
EXTENSIONS
More terms from R. J. Mathar, Jan 21 2010
STATUS
approved