login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344913
Table read by rows, T(n, k) (for 0 <= k <= n) = (-2)^(n - k)*k!*Stirling2(n, k).
0
1, 0, 1, 0, -2, 2, 0, 4, -12, 6, 0, -8, 56, -72, 24, 0, 16, -240, 600, -480, 120, 0, -32, 992, -4320, 6240, -3600, 720, 0, 64, -4032, 28896, -67200, 67200, -30240, 5040, 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320
OFFSET
0,5
FORMULA
T(n, k) = 2^(n - k)*Sum_{j=0..n} (-1)^(n - j)*binomial(k, j)*j^n.
Let row(n, x) be the n-th row polynomial, then B(n) = row(n-1, 1)*n / (4^n - 2^n) is the n-th Bernoulli number (with B(1) = 1/2) for n >= 1.
EXAMPLE
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, -2, 2;
[3] 0, 4, -12, 6;
[4] 0, -8, 56, -72, 24;
[5] 0, 16, -240, 600, -480, 120;
[6] 0, -32, 992, -4320, 6240, -3600, 720;
[7] 0, 64, -4032, 28896, -67200, 67200, -30240, 5040;
[8] 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320.
MAPLE
T := (n, k) -> (-2)^(n - k)*k!*Stirling2(n, k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
PROG
(PARI) T(n, k) = (-2)^(n - k)*k!*stirling(n, k, 2); \\ Michel Marcus, Aug 14 2021
CROSSREFS
Cf. A155585 (row sums), A122704 (alternating row sums, signed), A278075 (signed Fubini polynomials), A000142 (main diagonal), A048993 (Stirling2).
Sequence in context: A221609 A160125 A151868 * A052079 A291483 A181295
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 14 2021
STATUS
approved