|
|
A122704
|
|
a(n) = Sum_{k=0..n} 3^(n-k)*A123125(n, k).
|
|
17
|
|
|
1, 1, 4, 22, 160, 1456, 15904, 202672, 2951680, 48361216, 880405504, 17630351872, 385148108800, 9114999832576, 232311251144704, 6343764407375872, 184778982658539520, 5718564661248065536, 187389427488113557504, 6481629887083387420672, 235993351028007334051840
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n+1) = [1,4,22,160,1456,...] is the first Eulerian transform of A000244 (powers of 3), it is also the Stirling transform of A080599(n+1) = [1,3,12,66,450,...].
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1-2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = A_{n}(3) where A_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
E.g.f.: (exp(x) - 2*cosh(x))/(2*exp(x) - 3*cosh(x)) =1 + x/(U(0)-x) where U(k)= 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))); (continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 08 2012
G.f.: 1 + x/G(0) where G(k) = 1 - x*2*(2*k+2) + x^2*(k+1)*(k+2)*(1-2^2)/G(k+1); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Jan 11 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(4*k+1) - 3*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = 2^n*log(3)* Integral_{x >= 0} (floor(x))^n * 3^(-x) dx. - Peter Bala, Feb 14 2015
E.g.f.: 2/(3-exp(2*x)).
Special values of the generalized hypergeometric function n_F_(n-1):
a(n) = (2^(n+1)/9) * hypergeom([2,2,..2],[1,1,..1],1/3), where the sequence in the first square bracket ("upper" parameters) has n elements all equal to 2 whereas the sequence in the second square bracket ("lower" parameters) has n-1 elements all equal to 1.
Example: a(4) = (2^5/9) * hypergeom([2,2,2,2],[1,1,1],1/3) = 16. (End)
a(n) = (-1)^(n+1)*(Li_{-n}(sqrt(3)) + Li_{-n}(-sqrt(3)))/3, where Li_n(x) is the polylogarithm. - Vladimir Reshetnikov, Oct 31 2015
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * 2^(k - 1) * a(n-k). - Ilya Gutkovskiy, Jan 16 2020
a(n) = 2^n*F_{n}(1/2), where F_{n}(x) is the Fubini polynomial. This is another way to state the above formula from Ilya Gutkovskiy. - Peter Luschny, May 21 2021
a(n+1) = -2*a(n) + 3*Sum_{k=0..n} binomial(n, k)*a(k)*a(n-k). - Michael Somos, Jun 05 2021
a(n) = (-2)^(n + 1)*PolyLog(-n, 3)/3. - Peter Luschny, Aug 20 2021
|
|
EXAMPLE
|
G.f. = 1 + x + 4*x^2 + 22*x^3 + 160*x^4 + 1456*x^5 + 15904*x^6 + ... - Michael Somos, Jun 05 2021
|
|
MAPLE
|
seq(subs(x=3, add(combinat:-eulerian1(n, k)*x^k, k=0..n)), n=0..20);
# Alternative:
gf := -2/(exp(2*x) - 3): series(gf, x, 21): seq(n!*coeff(%, x, n), n=0..20);
# (End)
# Or via the recurrence of the Fubini polynomials:
F := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
a := n -> 2^n*subs(x = 1/2, F(n)):
# next Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*2^(j-1), j=1..n))
end:
|
|
MATHEMATICA
|
CoefficientList[Series[(Exp[x]-2*Cosh[x])/(2*Exp[x]-3*Cosh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 24 2013 *)
Table[Sum[2^(n+1)*k^n/3^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 28 2013 *)
Round@Table[(-1)^(n+1) (PolyLog[-n, Sqrt[3]] + PolyLog[-n, -Sqrt[3]])/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
Table[Sum[StirlingS2[n, k]*2^(n-k)*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 13 2018 *)
Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[ n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k]*3^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
a[n_] := (-2)^(n + 1) PolyLog[-n, 3] / 3;
|
|
PROG
|
(PARI) {a(n)=polcoeff(sum(m=0, n, m!*x^m/prod(k=1, m, 1-2*k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
(PARI) {a(n) = if(n<0, 0, n!*polcoeff( 2/(3 - exp(2*x + x*O(x^n))), n))}; /* Michael Somos, Jun 05 2021 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(7) corrected (was 206672) and more terms from Peter Luschny, Aug 03 2010
|
|
STATUS
|
approved
|
|
|
|