login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122703 Primes of the form p^2 + q^7 where p and q are primes. 1
137, 823547, 271818611111, 9974730326005061, 630634881591804953, 32525450580470426321, 2169562730596120989977, 3863897579789788264121, 122288345645958900577487, 680203568668250740574183, 3167337505302652506404471, 6421072852468062867774503, 8417887306491957134503937, 21307550075749197394472141 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

p and q cannot both be odd. Thus p=2 or q=2. After 3^2 + 2^7 = 137, all solutions are of the form 2^2 + q^7.

LINKS

Robert Israel, Table of n, a(n) for n = 1..5449

FORMULA

{a(n)} = {p^2 + q^7 in A000040 where p and q are in A000040}.

EXAMPLE

a(1) = 3^2 + 2^7 = 137.

a(2) = 2^2 + 7^7 = 823547.

a(3) = 2^2 + 43^7 = 271818611111.

a(4) = 2^2 + 193^7 = 9974730326005061.

a(5) = 2^2 + 349^7 = 630634881591804953.

MAPLE

N:= 10^30: # to get all terms <= N

A:= select(isprime, {137, seq(2^2 + q^7, q = select(isprime, [2, seq(i, i=3..floor((N-4)^(1/7)), 2)]))}):

sort(convert(A, list)); # Robert Israel, Jan 24 2018

CROSSREFS

Cf. A000040, A045700 (Primes of form p^2+q^3 where p and q are primes).

Sequence in context: A134874 A064104 A300407 * A200335 A292094 A031964

Adjacent sequences:  A122700 A122701 A122702 * A122704 A122705 A122706

KEYWORD

nonn

AUTHOR

Jonathan Vos Post, Sep 22 2006

EXTENSIONS

More terms from Robert Israel, Jan 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 15:46 EDT 2019. Contains 326108 sequences. (Running on oeis4.)