OFFSET
1,1
COMMENTS
p and q cannot both be odd. Thus p=2 or q=2.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 3^3 + 2^5 = 59.
a(2) = 5^3 + 2^5 = 157.
a(3) = 2^3 + 3^5 = 251.
a(4) = 29^3 + 2^5 = 24421.
MAPLE
N:= 10^10: # to get all terms <= N
A:= select(isprime, {seq(2^3 + q^5, q = select(isprime, [2, seq(i, i=3..floor((N-8)^(1/5)), 2)])),
seq(2^5 + q^3, q = select(isprime, [2, seq(i, i=3..floor((N-2^5)^(1/3)), 2)]))}):
sort(convert(A, list)); # Robert Israel, Jan 23 2018
MATHEMATICA
With[{nn=10^8}, Union[Select[Join[Prime[Range[Floor[Power[nn, (5)^-1]]]]^5+ 8, Prime[Range[Floor[Power[nn, (3)^-1]]]]^3+32], PrimeQ]]] (* Harvey P. Dale, Nov 26 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 22 2006
EXTENSIONS
More terms from Harvey P. Dale, Nov 26 2011
STATUS
approved