|
|
A122702
|
|
Primes of the form p^3 + q^5 where p and q are primes.
|
|
1
|
|
|
59, 157, 251, 24421, 161059, 2248123, 6436351, 6967903, 15813283, 20511157, 22188073, 58863901, 86938339, 90518881, 131872261, 263374753, 440711113, 553387693, 865523209, 1095912823, 1194390013, 1524845983, 1573037779, 2521008913, 2979767551, 3327970189
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
p and q cannot both be odd. Thus p=2 or q=2.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
{a(n)} = {p^3 + q^5 in A000040 where p and q are in A000040}.
|
|
EXAMPLE
|
a(1) = 3^3 + 2^5 = 59.
a(2) = 5^3 + 2^5 = 157.
a(3) = 2^3 + 3^5 = 251.
a(4) = 29^3 + 2^5 = 24421.
|
|
MAPLE
|
N:= 10^10: # to get all terms <= N
A:= select(isprime, {seq(2^3 + q^5, q = select(isprime, [2, seq(i, i=3..floor((N-8)^(1/5)), 2)])),
seq(2^5 + q^3, q = select(isprime, [2, seq(i, i=3..floor((N-2^5)^(1/3)), 2)]))}):
sort(convert(A, list)); # Robert Israel, Jan 23 2018
|
|
MATHEMATICA
|
With[{nn=10^8}, Union[Select[Join[Prime[Range[Floor[Power[nn, (5)^-1]]]]^5+ 8, Prime[Range[Floor[Power[nn, (3)^-1]]]]^3+32], PrimeQ]]] (* Harvey P. Dale, Nov 26 2011 *)
|
|
CROSSREFS
|
Cf. A000040, A045700 (Primes of form p^2+q^3 where p and q are primes).
Sequence in context: A140687 A118154 A033671 * A142422 A255352 A044391
Adjacent sequences: A122699 A122700 A122701 * A122703 A122704 A122705
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Sep 22 2006
|
|
EXTENSIONS
|
More terms from Harvey P. Dale, Nov 26 2011
|
|
STATUS
|
approved
|
|
|
|