The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122702 Primes of the form p^3 + q^5 where p and q are primes. 1
 59, 157, 251, 24421, 161059, 2248123, 6436351, 6967903, 15813283, 20511157, 22188073, 58863901, 86938339, 90518881, 131872261, 263374753, 440711113, 553387693, 865523209, 1095912823, 1194390013, 1524845983, 1573037779, 2521008913, 2979767551, 3327970189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS p and q cannot both be odd. Thus p=2 or q=2. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA {a(n)} = {p^3 + q^5 in A000040 where p and q are in A000040}. EXAMPLE a(1) = 3^3 + 2^5 = 59. a(2) = 5^3 + 2^5 = 157. a(3) = 2^3 + 3^5 = 251. a(4) = 29^3 + 2^5 = 24421. MAPLE N:= 10^10: # to get all terms <= N A:= select(isprime, {seq(2^3 + q^5, q = select(isprime, [2, seq(i, i=3..floor((N-8)^(1/5)), 2)])), seq(2^5 + q^3, q = select(isprime, [2, seq(i, i=3..floor((N-2^5)^(1/3)), 2)]))}): sort(convert(A, list)); # Robert Israel, Jan 23 2018 MATHEMATICA With[{nn=10^8}, Union[Select[Join[Prime[Range[Floor[Power[nn, (5)^-1]]]]^5+ 8, Prime[Range[Floor[Power[nn, (3)^-1]]]]^3+32], PrimeQ]]] (* Harvey P. Dale, Nov 26 2011 *) CROSSREFS Cf. A000040, A045700 (Primes of form p^2+q^3 where p and q are primes). Sequence in context: A140687 A118154 A033671 * A142422 A255352 A044391 Adjacent sequences:  A122699 A122700 A122701 * A122703 A122704 A122705 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Sep 22 2006 EXTENSIONS More terms from Harvey P. Dale, Nov 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 18:27 EDT 2022. Contains 354043 sequences. (Running on oeis4.)