login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122705 Dimension of the space of totally primitive elements of degree n in the Hopf algebra of parking functions, regarded as a bidendriform algebra. 2
1, 1, 7, 66, 786, 11278, 189391, 3648711, 79447316, 1932031529, 51960823060, 1532677854679, 49230269360973, 1711283608441418, 64026421121769925, 2566049037080050383, 109697901581313774979, 4983343674745936406410 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Foissy, L.  Plane posets, special posets, and permutations, Adv. Math. 240, 24-60 (2013).
J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, arXiv:math/0511200 [math.CO], 2005.
FORMULA
G.f.: (f(t)-1)/(f(t)^2) where f(t) = 1 + sum ( (n+1)^(n-1)*t^n, n >=1)
MAPLE
f:=proc(N); 1+sum((n+1)^(n-1)*t^n, n=1..N); end; g:=proc(N); taylor( (f(N)-1)/(f(N)^2), t, N+1); end; a:=proc(n); coeff(g(n), t, n); end;
MATHEMATICA
terms = 18; f[t_] = 1 + Sum[(n + 1)^(n - 1)*t^n, {n, 1, terms}];
CoefficientList[(f[t] - 1)/f[t]^2 + O[t]^(terms + 1), t] // Rest (* Jean-François Alcover, Nov 26 2017 *)
PROG
(PARI) lista(m) = {t = u + O(u^(m+1)); P = 1 + sum(n=1, m, (n+1)^(n-1)*t^n); Q = (P-1)/P^2; for (n=1, m, print1(polcoeff(Q, n, u), ", ")); } \\ Michel Marcus, Feb 12 2013
CROSSREFS
Sequence in context: A297310 A065097 A300991 * A185181 A024395 A215077
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 08:33 EST 2023. Contains 367558 sequences. (Running on oeis4.)