login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344914
T(n, k) = 2^(3*k)*(n - 3*k)!, for n >= 0 and 0 <= k <= floor(n/3). Triangle read by rows.
1
1, 1, 2, 6, 8, 24, 8, 120, 16, 720, 48, 64, 5040, 192, 64, 40320, 960, 128, 362880, 5760, 384, 512, 3628800, 40320, 1536, 512, 39916800, 322560, 7680, 1024, 479001600, 2903040, 46080, 3072, 4096, 6227020800, 29030400, 322560, 12288, 4096
OFFSET
0,3
EXAMPLE
[ 0] 1;
[ 1] 1;
[ 2] 2;
[ 3] 6, 8;
[ 4] 24, 8;
[ 5] 120, 16;
[ 6] 720, 48, 64;
[ 7] 5040, 192, 64;
[ 8] 40320, 960, 128;
[ 9] 362880, 5760, 384, 512;
[10] 3628800, 40320, 1536, 512;
[11] 39916800, 322560, 7680, 1024;
[12] 479001600, 2903040, 46080, 3072, 4096;
MAPLE
T := (n, k) -> 2^(3*k)*(n-3*k)!: seq(seq(T(n, k), k = 0..n/3), n = 0..13);
MATHEMATICA
Table[2^(3k) (n-3k)!, {n, 0, 20}, {k, 0, Floor[n/3]}]//Flatten (* Harvey P. Dale, Feb 13 2022 *)
CROSSREFS
Sequence in context: A153802 A217019 A240644 * A068496 A340810 A334898
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jun 06 2021
STATUS
approved