login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046978
Numerators of Taylor series for exp(x)*sin(x).
11
0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0
OFFSET
0,1
COMMENTS
Period 8: repeat [0, 1, 1, 1, 0, -1, -1, -1].
Lehmer sequence U_n for R=2, Q=1. - Artur Jasinski, Oct 06 2008
4*a(n+6) = period 8: repeat -4,-4,0,4,4,4,0,-4 = A189442(n+1) + A189442(n+5). - Paul Curtz, Jun 03 2011
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 0. - Michael Somos, Nov 27 2019
REFERENCES
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
FORMULA
Euler transform of length 8 sequence [1, 0, -1, -1, 0, 0, 0, 1]. - Michael Somos, Jul 16 2006
G.f.: x * (1 + x + x^2) / (1 + x^4) = x * (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^8)). a(-n) = a(n + 4) = -a(n). - Michael Somos, Jul 16 2006
a(n) = round((b^n - c^n)/(b - c)) where b = sqrt(2)-((1+i)/sqrt(2)), c = (1+i)/sqrt(2). - Artur Jasinski, Oct 06 2008
a(n) = sign(cos(Pi*(n-2)/4)). - Wesley Ivan Hurt, Oct 02 2013
EXAMPLE
G.f. = x + x^2 + x^3 - x^5 - x^6 - x^7 + x^9 + x^10 + x^11 - x^13 - x^14 - ...
1*x + 1*x^2 + (1/3)*x^3 - (1/30)*x^5 - (1/90)*x^6 - (1/630)*x^7 + (1/22680)*x^9 + (1/113400)*x^10 + ...
MAPLE
A046978 := n -> `if`(n mod 4 = 0, 0, (-1)^iquo(n, 4)): # Peter Luschny, Aug 21 2011
MATHEMATICA
a = -((1 + I)/Sqrt[2]) + Sqrt[2]; b = (1 + I)/Sqrt[2]; Table[ Round[(a^n - b^n)/(a - b)], {n, 0, 200}] (* Artur Jasinski, Oct 06 2008 *)
Table[Sign[Cos[Pi*(n-2)/4]], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 10 2013 *)
LinearRecurrence[{0, 0, 0, -1}, {0, 1, 1, 1}, 120] (* or *) PadRight[{}, 120, {0, 1, 1, 1, 0, -1, -1, -1}] (* Harvey P. Dale, Mar 17 2017 *)
PROG
(PARI) {a(n) = (n%4 > 0) * (-1)^(n\4)}; /* Michael Somos, Jul 16 2006 */
CROSSREFS
Cf. A046979.
Sequence in context: A341625 A359550 A166486 * A075553 A131729 A144609
KEYWORD
sign,frac,easy
STATUS
approved