The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046978 Numerators of Taylor series for exp(x)*sin(x). 9
 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Period 8: repeat [0, 1, 1, 1, 0, -1, -1, -1]. Lehmer sequence U_n for R=2, Q=1. - Artur Jasinski, Oct 06 2008 4*a(n+6) = period 8: repeat -4,-4,0,4,4,4,0,-4 = A189442(n+1) + A189442(n+5). - Paul Curtz, Jun 03 2011 This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 0. - Michael Somos, Nov 27 2019 REFERENCES G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1). C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17. FORMULA Euler transform of length 8 sequence [1, 0, -1, -1, 0, 0, 0, 1]. - Michael Somos, Jul 16 2006 G.f.: x * (1 + x + x^2) / (1 + x^4) = x * (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^8)). a(-n) = a(n + 4) = -a(n). - Michael Somos, Jul 16 2006 a(n) = round((b^n - c^n)/(b - c)) where b = sqrt(2)-((1+i)/sqrt(2)), c = (1+i)/sqrt(2). - Artur Jasinski, Oct 06 2008 a(n) = sign(cos(Pi*(n-2)/4)). - Wesley Ivan Hurt, Oct 02 2013 EXAMPLE G.f. = x + x^2 + x^3 - x^5 - x^6 - x^7 + x^9 + x^10 + x^11 - x^13 - x^14 - ... 1*x + 1*x^2 + (1/3)*x^3 - (1/30)*x^5 - (1/90)*x^6 - (1/630)*x^7 + (1/22680)*x^9 + (1/113400)*x^10 + ... MAPLE A046978 := n -> `if`(n mod 4 = 0, 0, (-1)^iquo(n, 4)): # Peter Luschny, Aug 21 2011 MATHEMATICA a = -((1 + I)/Sqrt[2]) + Sqrt[2]; b = (1 + I)/Sqrt[2]; Table[ Round[(a^n - b^n)/(a - b)], {n, 0, 200}] (* Artur Jasinski, Oct 06 2008 *) Table[Sign[Cos[Pi*(n-2)/4]], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 10 2013 *) LinearRecurrence[{0, 0, 0, -1}, {0, 1, 1, 1}, 120] (* or *) PadRight[{}, 120, {0, 1, 1, 1, 0, -1, -1, -1}] (* Harvey P. Dale, Mar 17 2017 *) PROG (PARI) {a(n) = (n%4 > 0) * (-1)^(n\4)}; /* Michael Somos, Jul 16 2006 */ CROSSREFS Cf. A046979. Sequence in context: A284939 A188260 A166486 * A075553 A131729 A144609 Adjacent sequences:  A046975 A046976 A046977 * A046979 A046980 A046981 KEYWORD sign,frac,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 20:51 EST 2020. Contains 338892 sequences. (Running on oeis4.)