login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046976 Numerators of Taylor series for sec(x) = 1/cos(x). 6
1, 1, 5, 61, 277, 50521, 540553, 199360981, 3878302429, 2404879675441, 14814847529501, 69348874393137901, 238685140977801337, 4087072509293123892361, 13181680435827682794403, 441543893249023104553682821, 2088463430347521052196056349 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also numerator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..243 (terms 0..100 from T. D. Noe)

X. Chen, Recursive formulas for zeta(2*k) and L(2*k-1), Coll. Math. J. 26 (5) (1995) 372-376. See numerators of D_(2k-1).

Eric Weisstein's World of Mathematics, Secant

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

Eric Weisstein's World of Mathematics, Hyperbolic Secant

FORMULA

a(n)/A046977(n) = A000364(n)/(2n)!.

Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = numerator(R(2*n+1)) and A046977(n) = denominator(R(2*n+1)). - Peter Luschny, Aug 25 2015

EXAMPLE

sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...

MAPLE

ZBS := z -> (Zeta(0, z, 1/4) - Zeta(0, z, 3/4))/(2^z-2):

R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:

seq(numer(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015

MATHEMATICA

Numerator[Partition[CoefficientList[Series[Sec[x], {x, 0, 30}], x], 2][[All, 1]]]

CROSSREFS

Cf. A000364, A046977, A053005, A099612.

Sequence in context: A201848 A087871 A242194 * A092838 A196296 A196214

Adjacent sequences:  A046973 A046974 A046975 * A046977 A046978 A046979

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)