login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053005
Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.
2
4, 32, 1536, 184320, 8257536, 14863564800, 1569592442880, 5713316492083200, 1096956766479974400, 6713375410857443328000, 408173224980132554342400, 18857602994082124010618880000, 640578267860512766391484416000
OFFSET
0,1
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Beta Function
EXAMPLE
beta(5) = 5*Pi^5/1536 so a(2)=1536.
MATHEMATICA
beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 19 2013 *)
CROSSREFS
Cf. A046976.
Sequence in context: A231991 A028369 A081790 * A257583 A258122 A012092
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Feb 21 2000
STATUS
approved