login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053005 Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m. 2
4, 32, 1536, 184320, 8257536, 14863564800, 1569592442880, 5713316492083200, 1096956766479974400, 6713375410857443328000, 408173224980132554342400, 18857602994082124010618880000, 640578267860512766391484416000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

EXAMPLE

beta(5) = 5*Pi^5/1536 so a(2)=1536.

MATHEMATICA

beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 19 2013 *)

CROSSREFS

Cf. A046976.

Sequence in context: A231991 A028369 A081790 * A257583 A258122 A012092

Adjacent sequences:  A053002 A053003 A053004 * A053006 A053007 A053008

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane, Feb 21 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 16:19 EST 2018. Contains 318229 sequences. (Running on oeis4.)