OFFSET
0,1
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
Eric Weisstein's World of Mathematics, Dirichlet Beta Function
EXAMPLE
beta(5) = 5*Pi^5/1536 so a(2)=1536.
MATHEMATICA
beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 19 2013 *)
CROSSREFS
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Feb 21 2000
STATUS
approved