login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053003 Continued fraction for M(1,sqrt(2)). 4
1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, 5, 2, 1, 1, 2, 2, 6, 9, 1, 1, 1, 3, 1, 2, 6, 1, 5, 1, 1, 2, 1, 13, 2, 2, 5, 1, 2, 2, 1, 5, 1, 3, 1, 3, 1, 2, 2, 2, 2, 8, 3, 1, 2, 2, 1, 10, 2, 2, 2, 3, 3, 1, 7, 1, 8, 3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 2, 17, 1, 4, 31, 2, 2, 5, 30, 1, 8, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.

J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000

Eric Weisstein's World of Mathematics, Gauss Constant.

G. Xiao, Contfrac

Index entries for continued fractions for constants

EXAMPLE

1.19814023473559220743992249228...

MATHEMATICA

ContinuedFraction[ArithmeticGeometricMean[1, Sqrt[2]], 100] (* Harvey P. Dale, Feb 26 2012 *)

PROG

(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(agm(1, sqrt(2))); for (n=1, 20000, write("b053003.txt", n, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

CROSSREFS

Cf. A014549, A053002, A053004.

Sequence in context: A224867 A156824 A053002 * A167202 A204914 A263130

Adjacent sequences:  A053000 A053001 A053002 * A053004 A053005 A053006

KEYWORD

nonn,cofr,nice,easy

AUTHOR

N. J. A. Sloane, Feb 21 2000

EXTENSIONS

More terms from James A. Sellers, Feb 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 04:08 EDT 2019. Contains 325290 sequences. (Running on oeis4.)