login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.
2

%I #18 Apr 12 2014 02:25:36

%S 4,32,1536,184320,8257536,14863564800,1569592442880,5713316492083200,

%T 1096956766479974400,6713375410857443328000,408173224980132554342400,

%U 18857602994082124010618880000,640578267860512766391484416000

%N Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

%D J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).

%H T. D. Noe, <a href="/A053005/b053005.txt">Table of n, a(n) for n = 0..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>

%e beta(5) = 5*Pi^5/1536 so a(2)=1536.

%t beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* _Jean-François Alcover_, Aug 19 2013 *)

%Y Cf. A046976.

%K nonn,frac,nice,easy

%O 0,1

%A _N. J. A. Sloane_, Feb 21 2000