The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258122 The multiplicative Wiener index of the cycle graph C_n (n>=3). 0
 1, 4, 32, 1728, 279936, 429981696, 2641807540224, 198135565516800000, 74300837068800000000000, 415989582513831936000000000000, 13974055172471046820331520000000000000, 8285929429609672784320522302259200000000000000, 34392048668455155319241086527782019661824000000000000000, 2908094259133650016606461590346496281704647737999360000000000000000, 1967201733524639238023450985668890257001862763630451357856563200000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS The multiplicative Wiener index of a connected simple graph G is defined as the product of distances between all pairs of distinct vertices of G. In the I. Gutman et al. reference, p. 114, the right-hand side of the formula for the multiplicative Wiener index pi(C_n) of C_n (n even) should be replaced by k^k*((k-1)!)^n. For the Wiener index of C_n see A034828. LINKS I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116. FORMULA a(n) = (k!)^n if n = 2k + 1 is odd (k>=1); a(n) = k^k((k - 1)!)^n if n = 2k is even (k>=2). EXAMPLE a(4) = 4 because the distances between vertices are 1,1,1,1,2,and 2. a(5) = 32 because the distances between vertices are 1,1,1,1,1,2,2,2,2, and 2. MAPLE a := proc(n) if `mod`(n, 2) = 1 then factorial((1/2)*n-1/2)^n else ((1/2)*n)^((1/2)*n)*factorial((1/2)*n-1)^n end if end proc: seq(a(n), n = 3 .. 17); CROSSREFS Cf. A034828. Sequence in context: A081790 A053005 A257583 * A012092 A336304 A027639 Adjacent sequences:  A258119 A258120 A258121 * A258123 A258124 A258125 KEYWORD nonn AUTHOR Emeric Deutsch, Aug 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 13:47 EST 2021. Contains 349413 sequences. (Running on oeis4.)