OFFSET
3,2
COMMENTS
The multiplicative Wiener index of a connected simple graph G is defined as the product of distances between all pairs of distinct vertices of G.
In the I. Gutman et al. reference, p. 114, the right-hand side of the formula for the multiplicative Wiener index pi(C_n) of C_n (n even) should be replaced by k^k*((k-1)!)^n.
For the Wiener index of C_n see A034828.
LINKS
I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
FORMULA
a(n) = (k!)^n if n = 2k + 1 is odd (k>=1); a(n) = k^k((k - 1)!)^n if n = 2k is even (k>=2).
EXAMPLE
a(4) = 4 because the distances between vertices are 1,1,1,1,2,and 2.
a(5) = 32 because the distances between vertices are 1,1,1,1,1,2,2,2,2, and 2.
MAPLE
a := proc(n) if `mod`(n, 2) = 1 then factorial((1/2)*n-1/2)^n else ((1/2)*n)^((1/2)*n)*factorial((1/2)*n-1)^n end if end proc: seq(a(n), n = 3 .. 17);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 17 2015
STATUS
approved