login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258119 Triangle T(n,k) in which the n-th row lists in increasing order the Heinz numbers of all perfect partitions of n. 5
1, 2, 4, 6, 8, 16, 18, 20, 32, 64, 42, 54, 56, 128, 100, 256, 162, 176, 512, 1024, 234, 260, 294, 392, 416, 486, 500, 2048, 4096, 1088, 1458, 8192, 1936, 2500, 16384, 798, 1026, 1064, 2058, 2432, 2744, 4374, 32768, 65536, 2300, 3042, 3380, 5408, 5888, 12500, 13122, 131072 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A partition of n is perfect if it contains just one partition of every number less than n when repeated parts are regarded as indistinguishable.

The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence because the partition [1,1,1,4] is perfect.

Number of terms in row n is A002033(n). As a matter of fact, so far the triangle has been constructed by selecting those A002033(n) entries from row n of A215366 which correspond to perfect partitions. Last term in row n is 2^n.

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p 123.

LINKS

Alois P. Heinz, Rows n = 0..500, flattened

EXAMPLE

54 = 2*3*3*3 is in the sequence because the partition [1,2,2,2] is perfect.

24 = 2*2*2*3 is not in the sequence because the partition [1,1,1,2] is not perfect (1+1+1=1+2; it is complete).

Triangle T(n,k) begins:

1;

2;

4;

6, 8;

16;

18, 20, 32;

64;

42, 54, 56, 128;

...

MAPLE

with(numtheory):

T:= proc(m) local b, ll, p;

if m=0 then return 1 fi;

p:= proc(l) ll:=ll, 2^(l[1]-1)*mul(ithprime(

mul(l[j], j=1..i-1))^(l[i]-1), i=2..nops(l)) end:

b:= proc(n, l) `if`(n=1, p(l), seq(b(n/d, [l[], d])

, d=divisors(n) minus{1})) end:

ll:= NULL; b(m+1, []): sort([ll])[]

end:

seq(T(n), n=0..20); # Alois P. Heinz, Jun 08 2015

MATHEMATICA

T[0] = {1}; T[m_] := Module[{b, ll, p}, p[l_List] := (ll = Append[ll, 2^(l[[1]]-1)*Product[Prime[Product[l[[j]], {j, 1, i-1}]]^(l[[i]]-1), {i, 2, Length[l]}]]; 1); b[n_, l_List] := If[n == 1, p[l], Table[b[n/d, Append[l, d]], {d, Divisors[n] // Rest}]]; ll = {}; b[m+1, {}]; Sort[ll] ]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 28 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A000079, A215366, A002033, A258118.

Column k=1 gives A259939.

Row sums give A360713.

Sequence in context: A283423 A073935 A325764 * A073696 A058602 A133808

Adjacent sequences: A258116 A258117 A258118 * A258120 A258121 A258122

KEYWORD

nonn,look,tabf

AUTHOR

Emeric Deutsch, Jun 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 22:04 EDT 2023. Contains 361391 sequences. (Running on oeis4.)