login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258118 Triangle T(n,k) in which the n-th row lists in increasing order the Heinz numbers of all complete partitions of n. 3
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 30, 36, 40, 48, 64, 42, 54, 56, 60, 72, 80, 96, 128, 84, 90, 100, 108, 112, 120, 144, 160, 192, 256, 126, 132, 140, 150, 162, 168, 176, 180, 200, 216, 224, 240, 288, 320, 384, 512, 198, 210, 220, 252, 264, 270, 280, 300, 324, 336, 352, 360, 400, 432, 448, 480, 576, 640, 768, 1024 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A partition of n is complete if every number from 1 to n can be represented as a sum of parts of the partition.

The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1,1,1,4] we get 2*2*2*7 = 56. It is in the sequence because the partition [1,1,1,4] is complete.

Except for a(0)=1, there are no odd numbers in the sequence. Indeed, a partition having an odd Heinz number does not have 1 as a part and, consequently, it cannot be complete.

Number of terms in row n is A126796(n). As a matter of fact, so far, the triangle has been constructed by selecting those A126796(n) entries from row n of A215366 which correspond to complete partitions. Last term in row n is 2^n.

LINKS

Alois P. Heinz, Rows n = 0..30, flattened

SeungKyung Park, Complete Partitions, Fibonacci Quarterly, Vol. 36 (1998), pp. 354-360.

EXAMPLE

54 = 2*3*3*3 is in the sequence because the partition [1,2,2,2] is complete.

28 = 2*2*7 is not in the sequence because the partition [1,1,4] is not complete.

Triangle T(n,k) begins:

1;

2;

4;

6,   8;

12, 16;

18, 20,  24,  32;

30, 36,  40,  48,  64;

42, 54,  56,  60,  72,  80,  96, 128;

84, 90, 100, 108, 112, 120, 144, 160, 192, 256;

MAPLE

T:= proc(m) local b, ll, p;

      p:= proc(l) ll:=ll, (mul(ithprime(j), j=l)); 1 end:

      b:= proc(n, i, l) `if`(i<2, p([l[], 1$n]), `if`(n<2*i-1,

      b(n, iquo(n+1, 2), l), b(n, i-1, l)+b(n-i, i, [l[], i])))

      end: ll:= NULL; b(m, iquo(m+1, 2), []): sort([ll])[]

    end:

seq(T(n), n=0..12);  # Alois P. Heinz, Jun 07 2015

MATHEMATICA

T[m_] := Module[{b, ll, p}, p[l_List] := (ll = Append[ll, Product[Prime[j], {j, l}]]; 1); b[n_, i_, l_List] := If[i<2, p[Join[l, Array[1&, n]]], If[n < 2*i-1, b[n, Quotient[n+1, 2], l], b[n, i-1, l] + b[n-i, i, Append[l, i] ]]]; ll = {}; b[m, Quotient[m+1, 2], {}]; Sort[ll]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A000079, A215366, A126796, A258119.

Column k=1 gives A259941.

Sequence in context: A231565 A191743 A308115 * A177807 A305726 A068563

Adjacent sequences:  A258115 A258116 A258117 * A258119 A258120 A258121

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Jun 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)