login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258120
Number of Fibonacci numbers in the partition having Heinz number n.
1
0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 0, 1, 2, 4, 0, 3, 1, 3, 1, 2, 0, 4, 2, 1, 3, 2, 0, 3, 0, 5, 2, 1, 1, 4, 0, 2, 1, 4, 1, 2, 0, 3, 3, 1, 0, 5, 0, 3, 1, 2, 0, 4, 2, 3, 2, 1, 0, 4, 0, 1, 2, 6, 1, 3, 0, 2, 1, 2, 0, 5, 1, 1, 3, 3, 1, 2, 0, 5, 4
OFFSET
1,4
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436; consequently, a(2436) = 3.
The subprogram B of the Maple program gives the partition having Heinz number n.
a(m*n) = a(m)+a(n).
LINKS
EXAMPLE
a(2)=1 because B(2)=[1]; a(3)=1 because B(3)=[2]; a(4)=2 because B(4)=[1,1]; a(28)=2 because B(28)=[1,1,4].
MAPLE
with(numtheory): a := proc (n) local B, F, ct, q: B := proc (n) local nn, j, m; nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc; F := {seq(combinat['fibonacci'](1+i), i = 1 .. max(B(n)))}: ct := 0; for q to nops(B(n)) do if member(B(n)[q], F) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 150);
MATHEMATICA
B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[ Table[ Table[ PrimePi[ m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
a[n_] := Module[{F, ct, q}, F = Union @ Table[Fibonacci[1 + i], {i, 1, Max[ B[n]]}]; ct = 0; For[q = 1, q <= Length[B[n]], q++, If[MemberQ[F, B[n][[q]]], ct++]]; ct];
Table[a[n], {n, 1, 150}] (* Jean-François Alcover, Apr 25 2017, translated from Maple *)
CROSSREFS
Sequence in context: A332104 A238735 A356006 * A379311 A379306 A147786
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 14 2015
STATUS
approved