login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275019
2-adic valuation of tetrahedral numbers C(n+2,3) = n(n+1)(n+2)/6 = A000292(n).
2
0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 5, 4, 5, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 6, 5, 6, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 5, 4, 5, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4
OFFSET
1,2
COMMENTS
The subsequence of every other term (a(2n-1), n >= 1) is the ruler sequence A007814 = (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...), in particular every fourth term is zero. The nonzero terms among them, a(4n-1) = A007814(2n) (n >= 1) have both their neighbors equal to one more than themselves, a(4n-2) = a(4n) = a(4n-1) + 1 = A007814(2n) + 1.
LINKS
FORMULA
From Robert Israel, Dec 04 2016: (Start)
a(n) = A007814(n) + A007814(n+1) + A007814(n+2) - 1.
G.f.: (1+x+x^2)*Sum_{k>=1} x^(2^k-2)/(1-x^(2^k)) - 1/(1-x). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Sep 13 2024
MAPLE
seq(padic:-ordp(n*(n+1)*(n+2)/6, 2), n=1..100); # Robert Israel, Dec 04 2016
MATHEMATICA
a[n_] := IntegerExponent[n*(n+1)*(n+2)/6, 2]; Array[a, 100] (* Amiram Eldar, Sep 13 2024 *)
PROG
(PARI) a(n)=valuation(n*(n+1)*(n+2)/6, 2)
(Magma) [Valuation(n*(n+1)*(n+2)/6, 2): n in [1..100]]; // Vincenzo Librandi, Dec 04 2016
(Python)
def A275019(n): return (~(m:=n*(n+1)*(n+2)//6)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022
CROSSREFS
Sequence in context: A379311 A379306 A147786 * A337835 A119387 A335905
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 03 2016
STATUS
approved