login
A275021
Pairs of primes p, p+4 such that p-2 and p+6 are composite.
2
79, 83, 127, 131, 163, 167, 379, 383, 397, 401, 439, 443, 487, 491, 499, 503, 673, 677, 739, 743, 757, 761, 769, 773, 907, 911, 937, 941, 967, 971, 1009, 1013, 1213, 1217, 1549, 1553, 1567, 1571, 1579, 1583, 1597, 1601, 2203, 2207, 2293, 2297
OFFSET
1,1
COMMENTS
List of prime numbers that occur in pairs of the form {p, p+4} after the sequential removal, from a list of all the primes, of (1) the one pair of primes of the form {p, p+1}, (2) all remaining twin prime pairs {p, p+2}.
Conjecture: the sequence has infinitely many terms and the sum of their reciprocals converges.
The second half of the conjecture is correct. The first half is true on Dickson's conjecture (because, for example, it would show that there are infinitely many k such that 210k+127 and 210k+131 are both prime). - Charles R Greathouse IV, Nov 20 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
PROG
(PARI) {
/* For biggest n allocatemem(max)*/
n=10^4-1;
v=vector(n, unused, 1);
for(i=2, sqrt(n),
if(v[i],
forstep(j=i^2, n, i, v[j]=0))
);
v[2]=0; v[3]=0;
for(i=5, n-2,
if(v[i]&&v[i+2],
v[i]=0; v[i+2]=0
)
);
for(i=5, n-4,
if(v[i]&&v[i+4],
print1(i", "i+4", ");
v[i]=0; v[i+4]=0;
)
)
}
(PARI) p=2; q=3; r=5; forprime(s=7, 1e3, if(r-q==4 && q-p>2 && s-r>2, print1(q", "r", ")); p=q; q=r; r=s) \\ Charles R Greathouse IV, Nov 19 2016
CROSSREFS
Sequence in context: A051326 A033399 A272639 * A033251 A015984 A235227
KEYWORD
nonn,easy
AUTHOR
Dimitris Valianatos, Nov 12 2016
STATUS
approved