login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147786
Number of partitions of n into parts divisible by 4 or 5.
5
1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 3, 2, 2, 3, 5, 3, 4, 3, 11, 5, 6, 6, 15, 13, 10, 9, 23, 17, 23, 15, 34, 27, 31, 33, 50, 40, 48, 45, 86, 60, 71, 69, 116, 106, 105, 102, 169, 144, 176, 150, 237, 211, 240, 248, 335, 299, 347, 338, 506, 425, 487, 487, 681
OFFSET
0,9
COMMENTS
Also number of partitions of n with no part and no difference between two parts equal to 1,2,3,6,7 or 11.
Also number of partitions of n with no part appearing 1,2,3,6,7 or 11 times.
LINKS
A. E. Holroyd, Partition Identities and the Coin Exchange Problem, arXiv:0706.2282 [math.CO], 2007.
A. E. Holroyd, Partition Identities and the Coin Exchange Problem, J. Combin. Theory Ser. A, 115 (2008) 1096-1101.
FORMULA
G.f.: Product_{k>=1} (1-x^(20k))/(1-x^(4k))/(1-x^(5k)).
a(n) ~ exp(2*Pi*sqrt(n/15))/(2*sqrt(30)*n). - Vaclav Kotesovec, Sep 23 2015
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^(5*k))*(1 + x^(10*k))/(1 - x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander E. Holroyd (holroyd at math.ubc.ca)
STATUS
approved