OFFSET
0,9
COMMENTS
Also number of partitions of n with no part and no difference between two parts equal to 1,2,3,6,7 or 11.
Also number of partitions of n with no part appearing 1,2,3,6,7 or 11 times.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
A. E. Holroyd, Partition Identities and the Coin Exchange Problem, arXiv:0706.2282 [math.CO], 2007.
A. E. Holroyd, Partition Identities and the Coin Exchange Problem, J. Combin. Theory Ser. A, 115 (2008) 1096-1101.
FORMULA
G.f.: Product_{k>=1} (1-x^(20k))/(1-x^(4k))/(1-x^(5k)).
a(n) ~ exp(2*Pi*sqrt(n/15))/(2*sqrt(30)*n). - Vaclav Kotesovec, Sep 23 2015
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^(5*k))*(1 + x^(10*k))/(1 - x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander E. Holroyd (holroyd at math.ubc.ca)
STATUS
approved