Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 14 2020 16:39:16
%S 0,1,1,2,1,2,0,3,2,2,1,3,0,1,2,4,0,3,1,3,1,2,0,4,2,1,3,2,0,3,0,5,2,1,
%T 1,4,0,2,1,4,1,2,0,3,3,1,0,5,0,3,1,2,0,4,2,3,2,1,0,4,0,1,2,6,1,3,0,2,
%U 1,2,0,5,1,1,3,3,1,2,0,5,4
%N Number of Fibonacci numbers in the partition having Heinz number n.
%C We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436; consequently, a(2436) = 3.
%C The subprogram B of the Maple program gives the partition having Heinz number n.
%C a(m*n) = a(m)+a(n).
%H Alois P. Heinz, <a href="/A258120/b258120.txt">Table of n, a(n) for n = 1..10000</a>
%e a(2)=1 because B(2)=[1]; a(3)=1 because B(3)=[2]; a(4)=2 because B(4)=[1,1]; a(28)=2 because B(28)=[1,1,4].
%p with(numtheory): a := proc (n) local B, F, ct, q: B := proc (n) local nn, j, m; nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc; F := {seq(combinat['fibonacci'](1+i), i = 1 .. max(B(n)))}: ct := 0; for q to nops(B(n)) do if member(B(n)[q], F) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 150);
%t B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[ Table[ Table[ PrimePi[ m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
%t a[n_] := Module[{F, ct, q}, F = Union @ Table[Fibonacci[1 + i], {i, 1, Max[ B[n]]}]; ct = 0; For[q = 1, q <= Length[B[n]], q++, If[MemberQ[F, B[n][[q]]], ct++]]; ct];
%t Table[a[n], {n, 1, 150}] (* _Jean-François Alcover_, Apr 25 2017, translated from Maple *)
%Y Cf. A000045, A215366.
%K nonn
%O 1,4
%A _Emeric Deutsch_, Jun 14 2015