login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A325764
Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers.
2
1, 2, 4, 6, 8, 16, 18, 20, 32, 54, 56, 64, 100, 128, 162, 176, 256, 392, 416, 486, 500, 512, 1024, 1088, 1458, 1936, 2048, 2432, 2500, 2744, 4096, 4374, 5408, 5888, 8192, 12500, 13122, 14848, 16384, 18496, 19208, 21296, 31744, 32768, 39366, 46208, 62500, 65536
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325765.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
32: {1,1,1,1,1}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
100: {1,1,3,3}
128: {1,1,1,1,1,1,1}
162: {1,2,2,2,2}
176: {1,1,1,1,5}
256: {1,1,1,1,1,1,1,1}
392: {1,1,1,4,4}
416: {1,1,1,1,1,6}
486: {1,2,2,2,2,2}
500: {1,1,3,3,3}
512: {1,1,1,1,1,1,1,1,1}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], UnsameQ@@Total/@Union[ReplaceList[primeMS[#], {___, s__, ___}:>{s}]]&&Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#], {___, s__, ___}:>Plus[s]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 20 2019
STATUS
approved