login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325764
Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers.
2
1, 2, 4, 6, 8, 16, 18, 20, 32, 54, 56, 64, 100, 128, 162, 176, 256, 392, 416, 486, 500, 512, 1024, 1088, 1458, 1936, 2048, 2432, 2500, 2744, 4096, 4374, 5408, 5888, 8192, 12500, 13122, 14848, 16384, 18496, 19208, 21296, 31744, 32768, 39366, 46208, 62500, 65536
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325765.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
32: {1,1,1,1,1}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
100: {1,1,3,3}
128: {1,1,1,1,1,1,1}
162: {1,2,2,2,2}
176: {1,1,1,1,5}
256: {1,1,1,1,1,1,1,1}
392: {1,1,1,4,4}
416: {1,1,1,1,1,6}
486: {1,2,2,2,2,2}
500: {1,1,3,3,3}
512: {1,1,1,1,1,1,1,1,1}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], UnsameQ@@Total/@Union[ReplaceList[primeMS[#], {___, s__, ___}:>{s}]]&&Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#], {___, s__, ___}:>Plus[s]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 20 2019
STATUS
approved