login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034828
a(n) = floor(n^2/4)*(n/2).
17
0, 0, 1, 3, 8, 15, 27, 42, 64, 90, 125, 165, 216, 273, 343, 420, 512, 612, 729, 855, 1000, 1155, 1331, 1518, 1728, 1950, 2197, 2457, 2744, 3045, 3375, 3720, 4096, 4488, 4913, 5355, 5832, 6327, 6859, 7410, 8000, 8610, 9261, 9933, 10648, 11385, 12167, 12972, 13824
OFFSET
0,4
COMMENTS
Wiener index of cycle of length n.
a(n+1) is the sum of labeled number of boxes arranged as pyramid with base n. The sum of boxes is A002620(n+1). See the illustration in links. - Kival Ngaokrajang, Jul 02 2013
LINKS
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Kival Ngaokrajang, Illustration for n = 1..10.
Eric Weisstein's World of Mathematics, Wiener Index.
H. J. Wiener, Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 69 (1947), 17-20.
J. Zerovnik, Szeged index of symmetric graphs, J. Chem. Inf. Comput. Sci., 39 (1999), 77-80.
FORMULA
a(n) = (n^2-1)*n/8 if n is odd, otherwise n^3/8.
From Paul Barry, May 13 2005: (Start)
G.f.: x^2*(1+x+x^2)/((1-x)^2*(1-x^2)^2).
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
a(n) = (2*n^3 +12*n^2 +23*n +14)/16 +(n+2)*(-1)^n/16.
a(n) = Sum_{k=0..floor((n+2)/2)} ((n+2)/(n+2-k))(-1)^k*C(n+2-k, k)* C(n-2*k+2, 2)*C(n-2*k, floor((n-2*k)/2)). [Typo corrected by R. J. Mathar, Aug 18 2008] (End)
a(n) = (2*n^2 - 1 + (-1)^n) * n / 16. - Michael Somos, Sep 06 2008
Euler transform of length 3 sequence [3, 2, -1]. - Michael Somos, Sep 06 2008
a(-n) = -a(n). - Michael Somos, Sep 06 2008
a(2n) = A000578(n). a(2n+1) = 3*A000330(n). a(n) = n*A002620(n)/2. - Michael Somos, Sep 06 2008
a(n) = (-n + Sum_{k=1..n} A007310(k)^2)/24. - Jesko Matthes, Feb 19 2021
Sum_{n>=2} 1/a(n) = 6 - 8*log(2) + zeta(3). - Amiram Eldar, Apr 16 2022
a(n) = Sum_{k=1..n} A062717(k)/4. - Sela Fried, Jun 27 2022
EXAMPLE
G.f.: x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 42*x^7 + 64*x^8 + 90*x^9 + ...
MAPLE
A034828:=n->n*floor(n^2/4)/2; seq(A034828(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
MATHEMATICA
Table[Floor[n^2/4] n/2, {n, 0, 50}] (* Harvey P. Dale, Jun 10 2011 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 1, 3, 8, 15}, 50] (* Harvey P. Dale, Jun 10 2011 *)
PROG
(PARI) {a(n) = (n^2 \ 4) * n / 2} /* Michael Somos, Sep 06 2008 */
(PARI) {a(n) = if( n<0, -a(-n), polcoeff( x^2 * (1 + x + x^2) / ((1 - x)^2 * (1 - x^2)^2) + x * O(x^n), n))} /* Michael Somos, Sep 06 2008 */
(Magma) [Floor(n^2/4)*(n/2): n in [0..50]]; // G. C. Greubel, Feb 23 2018
CROSSREFS
Equals A005996/2.
Partial sums of A001318.
Cf. A107231.
Cf. A062717.
Sequence in context: A047866 A080183 A109900 * A081276 A210979 A047837
KEYWORD
nonn,easy,nice
EXTENSIONS
Definition reworded by Michael Somos, Sep 06 2008
STATUS
approved