login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081276
Floor(n^3/8).
2
0, 0, 1, 3, 8, 15, 27, 42, 64, 91, 125, 166, 216, 274, 343, 421, 512, 614, 729, 857, 1000, 1157, 1331, 1520, 1728, 1953, 2197, 2460, 2744, 3048, 3375, 3723, 4096, 4492, 4913, 5359, 5832, 6331, 6859, 7414, 8000, 8615, 9261, 9938, 10648, 11390, 12167, 12977
OFFSET
0,4
COMMENTS
a(2n) = n^3.
LINKS
FORMULA
a(n) = floor(n^3/8).
G.f.: x^2*(-x^3-2*x^5+3*x^4+1+4*x^6+2*x^2-2*x^7+x^8)/((-1+x)^4*(1+x)*(1+x^2)*(x^4+1)). - R. J. Mathar, Jun 26 2009
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=8, a(5)=15, a(6)=27, a(7)=42, a(8)=64, a(9)=91, a(10)=125, a(n)=3*a(n-1)-3*a(n-2)+a(n-3)+a(n-8)- 3*a(n-9)+ 3*a(n-10)-a (n-11). - Harvey P. Dale, Jan 27 2012
MATHEMATICA
Floor[Range[0, 50]^3/8] (* or *) LinearRecurrence[ {3, -3, 1, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 1, 3, 8, 15, 27, 42, 64, 91, 125}, 50] (* Harvey P. Dale, Jan 27 2012 *)
PROG
(Magma) [Floor(n^3/8): n in [0..50]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 15 2003
STATUS
approved