OFFSET
0,4
COMMENTS
a(2n) = n^3.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,1,-3,3,-1).
FORMULA
a(n) = floor(n^3/8).
G.f.: x^2*(-x^3-2*x^5+3*x^4+1+4*x^6+2*x^2-2*x^7+x^8)/((-1+x)^4*(1+x)*(1+x^2)*(x^4+1)). - R. J. Mathar, Jun 26 2009
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=8, a(5)=15, a(6)=27, a(7)=42, a(8)=64, a(9)=91, a(10)=125, a(n)=3*a(n-1)-3*a(n-2)+a(n-3)+a(n-8)- 3*a(n-9)+ 3*a(n-10)-a (n-11). - Harvey P. Dale, Jan 27 2012
MATHEMATICA
Floor[Range[0, 50]^3/8] (* or *) LinearRecurrence[ {3, -3, 1, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 1, 3, 8, 15, 27, 42, 64, 91, 125}, 50] (* Harvey P. Dale, Jan 27 2012 *)
PROG
(Magma) [Floor(n^3/8): n in [0..50]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 15 2003
STATUS
approved