|
|
A047873
|
|
a(n) = max_{r=1..n-1} ceiling(t(t(n)-t(r-1))/(n-r+1)), where t() = triangular numbers A000217.
|
|
1
|
|
|
1, 3, 8, 15, 27, 43, 65, 94, 130, 175, 229, 294, 369, 456, 557, 671, 800, 944, 1105, 1283, 1479, 1695, 1930, 2187, 2465, 2765, 3090, 3439, 3813, 4213, 4641, 5096, 5580, 6095, 6639, 7216, 7825, 8466, 9143, 9855
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Another lower bound for Honaker triangle problem (A047837); conjectured to be exact value.
|
|
LINKS
|
|
|
FORMULA
|
Empirical g.f.: -x*(x^15 - 3*x^14 + 3*x^13 - 5*x^12 + 5*x^11 - 9*x^10 + 7*x^9 - 10*x^8 + 7*x^7 - 9*x^6 + 5*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - 1) / ((x-1)^4*(x^2-x+1)*(x^2+1)*(x^2+x+1)^2*(x^4-x^2+1)). [Colin Barker, Jan 18 2013]
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Mike Keith (domnei(AT)aol.com)
|
|
STATUS
|
approved
|
|
|
|