login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047837
Honaker's triangle problem: form a triangle with base of length n, all entries different, all row sums equal; a(n) gives minimal row sum.
6
1, 3, 8, 15, 27, 43, 65, 94, 130, 175, 229, 294, 369, 456, 557, 671, 800, 944, 1105, 1283, 1479, 1695, 1930, 2187, 2465, 2765, 3090, 3439, 3813, 4213, 4641, 5096, 5580, 6095, 6639, 7216, 7825, 8466, 9143, 9855
OFFSET
1,2
COMMENTS
Suggested by G. L. Honaker, Jr.
Agrees with A047873 at least for n < 365, conjectured to always agree.
REFERENCES
Pickover, C. A., The Zen of Magic Squares, Circles and Stars: An Exhibition Of Surprising Structures Across Dimensions, Princeton University Press, 2002 (pp. 289-292).
FORMULA
Appears to obey a 16-term linear recurrence. - Ralf Stephan, May 06 2004
Empirical g.f.: -x*(x^15 - 3*x^14 + 3*x^13 - 5*x^12 + 5*x^11 - 9*x^10 + 7*x^9 - 10*x^8 + 7*x^7 - 9*x^6 + 5*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - 1) / ((x-1)^4*(x^2-x+1)*(x^2+1)*(x^2+x+1)^2*(x^4-x^2+1)). - Colin Barker, Jan 18 2013
EXAMPLE
a(1)..a(4), 1 // 3; 1 2 // 8; 2 6; 1 3 4 // 15; 7 8; 4 5 6; 1 2 3 9.
a(6) = 43, 21 22; 8 16 19; 5 9 12 17; 3 4 7 14 15; 1 2 6 10 11 13.
a(7) = 65, 32 33; 20 21 24; 14 15 17 19; 9 10 11 12 23; 5 6 7 13 16 18; 1 2 3 4 8 22 25.
CROSSREFS
Cf. A047866.
Sequence in context: A034828 A081276 A210979 * A047873 A036419 A054107
KEYWORD
nonn,nice
AUTHOR
STATUS
approved