The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011863 Nearest integer to (n/2)^4. 15
0, 0, 1, 5, 16, 39, 81, 150, 256, 410, 625, 915, 1296, 1785, 2401, 3164, 4096, 5220, 6561, 8145, 10000, 12155, 14641, 17490, 20736, 24414, 28561, 33215, 38416, 44205, 50625, 57720, 65536, 74120, 83521, 93789, 104976, 117135, 130321, 144590 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
First differences are in A019298.
The bisections are A000583 and A219086.
Number of ways to put n-1 copies of 1,2,3 into sets. [Zeilberger?]
s(n) is the number of 4-tuples (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|; see A186707. - Clark Kimberling, May 24 2012
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (first 2000 terms from Vicenzo Librandi)
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189 (H_2 for square lattice of Section 6).
Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger (2009); Local copy. [PDF file only, no active links]
FORMULA
G.f.: x^2*(1 + x + x^2)/((1 - x)^5*(1+x)).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6). - R. J. Mathar, Dec 07 2010
a(n)+a(n+1) = A002817(n). - R. J. Mathar, Dec 19 2008
a(n) = n^4/16 - 1/32 + (-1)^n/32 - R. J. Mathar, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = (2*A000583(n) + (-1)^n - 1)/32. - Bruno Berselli, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
n*(n^2+n+2)*a(n+1) = 4*(n^2+2*n+2)*a(n)+(n+2)*(n^2+3*n+4)*a(n-1). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n) = floor(n^4/8)/2. - Gary Detlefs, Feb 19 2011, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = A212714(n)/2, n >= 0. - Wolfdieter Lang, Oct 03 2016, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
E.g.f.: (1/32)*exp(-x)*(1 + exp(2*x)*(-1 + 2*x + 14*x^2 + 12*x^3 + 2*x^4)). - Stefano Spezia, Dec 29 2019
Sum_{n>=2} 1/a(n) = 6 + Pi^4/90 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Aug 13 2022
MAPLE
seq(round((n/2)^4), n=0..40);
MATHEMATICA
Round[(Range[40]/2)^4] (* or *) LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 5, 16, 39, 81}, 40] (* Harvey P. Dale, Feb 07 2015 *)
PROG
(Magma) [ (2*n^4-(1-(-1)^n))/32: n in [0..50] ];
(PARI) a(n)=round((n/2)^4) \\ Charles R Greathouse IV, Jun 23 2011
CROSSREFS
Sequence in context: A155965 A216173 A269747 * A027085 A099452 A006007
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Missing a(0) added by N. J. A. Sloane, Dec 29 2019. As a result some of the comments and formulas will need to be adjusted.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 20:28 EDT 2024. Contains 373401 sequences. (Running on oeis4.)