OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 7_7. 1/(1-5*x+9*x^2-5*x^3+x^4) is the image of the g.f. of A099450 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).
LINKS
Dror Bar-Natan, The Rolfsen Knot Table
Index entries for linear recurrences with constant coefficients, signature (5,-9,5,-1).
FORMULA
G.f.: (1-x)*(1+x)*(1+x^2)/(1-5*x+9*x^2-5*x^3+x^4). - corrected by R. J. Mathar, Nov 24 2012
MATHEMATICA
LinearRecurrence[{5, -9, 5, -1}, {1, 5, 16, 40, 79}, 40] (* Harvey P. Dale, Apr 18 2019 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved