login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099449
An Alexander sequence for the knot 7_6.
2
1, 5, 18, 60, 197, 650, 2153, 7140, 23682, 78545, 260498, 863945, 2865282, 9502740, 31515953, 104523050, 346651997, 1149675660, 3812913618, 12645575405, 41939208002, 139091904605, 461300030418, 1529907284460, 5073956524397
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 7_6. The g.f. is the image of the g.f. of A030191 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2))
FORMULA
G.f.: -(x-1)*(x+1)*(x^2+1) / (x^4-5*x^3+7*x^2-5*x+1). - Colin Barker, Feb 10 2014
a(n) = A099448(n) - A099448(n-2).
a(n) = 5*a(n-1)-7*a(n-2)+5*a(n-3)-a(n-4) for n>4. - Colin Barker, Feb 10 2014
MATHEMATICA
CoefficientList[Series[(1 - x) (x + 1) (x^2 + 1)/(x^4 -5 x^3 + 7 x^2 - 5 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{5, -7, 5, -1}, {1, 5, 18, 60, 197}, 30] (* Harvey P. Dale, Oct 06 2015 *)
PROG
(PARI) Vec(-(x-1)*(x+1)*(x^2+1)/(x^4-5*x^3+7*x^2-5*x+1) + O(x^100)) \\ Colin Barker, Feb 10 2014
(Magma) I:=[1, 5, 18, 60, 197, 650, 2153, 7140]; [n le 8 select I[n] else 5*Self(n-1)-7*Self(n-2)+5*Self(n-3)-Self(n-4) : n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
CROSSREFS
Sequence in context: A284968 A222567 A377857 * A104630 A062809 A350782
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
EXTENSIONS
g.f. corrected by Colin Barker, Feb 10 2014
STATUS
approved